The mean speed of the molecules of an ideal gas is 2.0×10^3 ms^-1 . The radius of a gas molecule is 1.5×10^-10 m . Calculate the (i) collision frequency, and (ii) mean free path. It is given that 4×10^24 m^-3 .
Answer
Mean free path
λ=12πd2n\lambda=\frac{1}{\sqrt{2}\pi d^2 n}λ=2πd2n1
n=4×1024m−34×10^{24 }m^{-3}4×1024m−3
d=3×10−10m3×10^{-10}m3×10−10m
v=2.0×103ms−12.0×10^3 ms^{-1}2.0×103ms−1
λ=11.414×3.14(3×10−10)2×4×1024m−3\lambda=\frac{1}{1.414\times3.14 ( 3×10^{-10}) ^2\times 4×10^{24 }m^{-3} }λ=1.414×3.14(3×10−10)2×4×1024m−31
λ=6256×10−10m\lambda=6256\times10^{-10}mλ=6256×10−10m
Now collision frequency
ν=vλ=2.0×1036256×10−10=31.98×108Hz\nu=\frac{v}{\lambda}\\=\frac{ 2.0×10^3 }{ 6256\times10^{-10} }\\=31.98\times10^8Hzν=λv=6256×10−102.0×103=31.98×108Hz
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments