The mean speed of the molecules of an ideal gas is 2.0×10^3 ms^-1 . The radius of a gas molecule is 1.5×10^-10 m . Calculate the (i) collision frequency, and (ii) mean free path. It is given that 4×10^24 m^-3 .
Answer
Mean free path
"\\lambda=\\frac{1}{\\sqrt{2}\\pi d^2 n}"
n="4\u00d710^{24 }m^{-3}"
d="3\u00d710^{-10}m"
v="2.0\u00d710^3 ms^{-1}"
"\\lambda=\\frac{1}{1.414\\times3.14 ( 3\u00d710^{-10}) ^2\\times 4\u00d710^{24 }m^{-3} }"
"\\lambda=6256\\times10^{-10}m"
Now collision frequency
"\\nu=\\frac{v}{\\lambda}\\\\=\\frac{ 2.0\u00d710^3 }{ 6256\\times10^{-10} }\\\\=31.98\\times10^8Hz"
Comments
Leave a comment