The mean free path of the molecules of
a gas at 27°C is 6.0 x 10-8 m. Calculate
the pressure exerted by the gas.
The radius of the molecule is 1.8 A.
Take kB= 1.38x 10-23J K -1.
Mean free path equation "\\lambda=\\frac{kT}{\\sqrt 2 \\pi Pd^2_i}"
Where "\\lambda" = Mean free path of gas species
KB=Boltzmann constant
P= pressure
d= gas species diameter
T= temperature
substituting the values in the equation,
diameter of gas species="1.8\\times2=3.6A=3.6\\times10^{-10}"
"6.0\\times10^{-8}=\\frac{1.38\\times10^{-23}\\times300}{\\sqrt2 \\pi P \\times 3.6\\times10^{-10}}"
making P subject of the formula,
"P=\\frac{1.38\\times10^{-23}\\times300}{3.6\\times10^{-10}\\times\\pi\\times\\sqrt2\\times6.0\\times10^{-8}}"
"P=\\frac{4.14\\times10^{-21}}{9.5966\\times10^{-17}}"
"P=4.314\\times10^{-5}Pa"
Comments
Leave a comment