(а) n=m/M
"n(O_{2}) = 12 g \/ (32 g\/mol) = 0.375 mol"
(b) Molar specific heat of a diatomic gas (number of degrees of freedom = 5 [3 translation + 2 rotation], assuming molecules do not vibrate) at constant pressure Cp = \frac{7}{2}R
R is gas constant.
"R = 8.314 J\/Kmol"
"C_{p}(O_{2}) = \\frac{7}{2}\\times8.314 = 29.099 J\/Kmol"
"\u0394Q=n\\times C_{p}\\times\u0394T"
ΔT = 100 K
"\u0394Q=0.375 mol \\times 29.099 J\/Kmol \\times 100 K = 1091.21 J"
ΔQ = 1.09 kJ
(c) Change in internal energy of "O_{2}" at constant volume:
"\u0394U=n\\times C_{v}\\times\u0394T"
"C_{v}=\\frac{5}{2}R"
Ratio ΔU/ΔQ = (n"\\times\\frac{5}{2}" R"\\times" ΔT)/(n"\\times\\frac{7}{2}" R"\\times" ΔT) = "\\frac{5}{7}"
"\\frac{5}{7}" fraction of heat supplied is used to increase the internal energy of the oxygen.
Comments
Leave a comment