Question #129856
A gas undergoes adiabatic transformation using the first law of thermodynamics show that this process is represented by the equation pVy =constant
1
Expert's answer
2020-08-17T09:46:34-0400

The first law of thermodynamics says

δQ=dU+pdV\delta Q=dU+pdV

For adiabatic processes

δQ=0\delta Q=0

Hence

dU+pdV=0dU+pdV=0

(UT)VdT+[(UV)TdT+p](TV)pdV=0\left(\frac{\partial U}{\partial T}\right)_VdT+\frac{\left[\left(\frac{\partial U}{\partial V}\right)_TdT+p\right]}{\left(\frac{\partial T}{\partial V}\right)_p}dV=0CVdT+[CpCV](TV)pdV=0C_VdT+\frac{\left[C_p-C_V\right]}{\left(\frac{\partial T}{\partial V}\right)_p}dV=0

For perfect gas


pV=RTpV=RT

CVdT+[CpCV]VTdV=0C_VdT+\frac{\left[C_p-C_V\right]}{\frac{V}{T}}dV=0

dTT+[Cp/CV1]dVV=0\frac{dT}{T}+\left[C_p/C_V-1\right]\frac{dV}{V}=0

dTT+[γ1]dVV=0\frac{dT}{T}+\left[\gamma-1\right]\frac{dV}{V}=0

After integrating

lnT+(γ1)lnV=lnConst\ln T+(\gamma-1)\ln V=\ln \rm Const

TVγ1=ConstTV^{\gamma-1}=\rm Const

or


pVRVγ1=Const\frac{pV}{R}V^{\gamma-1}=\rm Const

Finally


pVγ=ConstpV^{\gamma}=\rm Const


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS