If we consider the ideal monoatomic gas, we'll see that the adiabatic index "\\gamma = \\dfrac53."
Before the processes "V_0 = 0.800\\,\\mathrm{m}^3, \\nu=10\\,\\mathrm{mol}." "p_0V_0 =\\nu R T_0."
After the first process "p_1V_1=\\nu RT_0" , therefore "p_0 =\\dfrac{p_1V_1}{V_0} = \\dfrac{2\\cdot10^4\\,\\mathrm{Pa}\\cdot1.200\\,\\mathrm{m}^3}{0.800\\,\\mathrm{m}^3} = 3\\cdot10^4\\,\\mathrm{Pa}." The temperature is "T_0 = \\dfrac{p_1V_1}{\\nu R} = \\dfrac{3\\cdot10^4\\,\\mathrm{Pa}\\cdot0.800\\,\\mathrm{m}^3}{10\\cdot8.31} \\approx 289\\,\\mathrm{K}."
The second process is adiabatic, so
"p_1V_1^{\\gamma}=p_2V_2^{\\gamma} \\Rightarrow p_2 =p_1\\left(\\dfrac{V_1}{V_2} \\right)^{\\gamma} = 2\\cdot10^4\\,\\mathrm{Pa}\\cdot\\left( \\dfrac{1.200}{1.480}\\right)^{5\/3} = 14100\\,\\mathrm{Pa}."
The third process is isothermal, "p_2V_2 = p_3V_3, \\;\\; V_3 = \\dfrac{p_2V_2}{p_3} = \\dfrac{14100\\,\\mathrm{Pa}\\cdot1.480\\,\\mathrm{m}^3}{21.15\\cdot10^3\\,\\mathrm{Pa} } = 0.987\\,\\mathrm{m^3}."
The temperature is "T_2 = \\dfrac{p_3V_3}{\\nu R} = \\dfrac{21150\\cdot0.987\\,\\mathrm{m}^3}{10\\cdot8.31} = 251\\,\\mathrm{K}."
The last process is adiabatic, so "p_3V_3^{\\gamma} = p_4V_4^{\\gamma} \\Rightarrow V_4 = V_3\\left(\\dfrac{p_3}{p_4} \\right)^{1\/\\gamma} = 0.8\\,\\mathrm{m}^3."
We can see that "V_4=V_0, \\; p_4=p_0," so the "T_4=T_0." The process is cyclic, it is a kind of Carnot cycle (see https://en.wikipedia.org/wiki/Carnot_cycle).
i) 1) and 3) processes are isothermal, so the work is equal to the heat.
"A_1 = \\int\\limits_{V_0}^{V_1}p\\,dV =\\nu \\int\\limits_{V_0}^{V_1}\\dfrac{RT_0}{V}\\,dV =\\nu RT_0\\ln\\dfrac{V_1}{V_0} = 10\\cdot8.31\\cdot 289\\cdot\\ln\\dfrac{1.2}{0.8} = 9740\\,\\mathrm{J}."
"A_3 =\\int\\limits_{V_2}^{V_3}p\\,dV =\\nu \\int\\limits_{V_2}^{V_3}\\dfrac{RT_3}{V}\\,dV =\\nu RT_3\\ln\\dfrac{V_3}{V_2} = 10\\cdot8.31\\cdot 251\\cdot\\ln\\dfrac{0.987}{1.48} = -8450\\,\\mathrm{J}."
ii) The process is cyclic, it is a kind of Carnot cycle (see https://en.wikipedia.org/wiki/Carnot_cycle).
iii) The change of entropy in isothermal process is (see https://en.wikipedia.org/wiki/Isothermal_process)
"\\Delta S_1 = \\nu R \\ln \\dfrac{P_1}{P_0}=10\\cdot8.31\\cdot\\ln \\dfrac{2\\cdot10^4}{3\\cdot10^4} = -33.7\\,\\mathrm{J\/K}."
"\\Delta S_3= \\nu R \\ln \\dfrac{P_3}{P_2}=10\\cdot8.31\\cdot\\ln \\dfrac{21150}{14100} = 33.7\\,\\mathrm{J\/K}."
In 2) and 4) adiabatic processes "\\Delta S_2=\\Delta S_4 = 0."
So the entropy is constant in this cyclic process.
Comments
Leave a comment