Question #121927
Ten moles of a monaatomic ideal gas initially has a volume of 0.800m3. The gas undergoes four processes: 1) without changing its temperature, the gas expands to a volume of 1.200m3, at which point its pressure is 20.00KPa, 2) The gas expands to a volume of 1.480m3 without heat entering or leaving the gas. 3) without changing its temperature, the gas is compressed until its pressure is 21.15KPa. 4) The gas is compressed to a pressure of 30.00KPa without heat entering or leaving the gas.
I) calculate the work done by the gas in processes 1) and 3).
II) Determine the process that the gas undergoes
III) Using the definition of the entropy, calculate the total change in entropy during the four processes. Comment on your answer.
1
Expert's answer
2020-06-12T11:11:12-0400

If we consider the ideal monoatomic gas, we'll see that the adiabatic index γ=53.\gamma = \dfrac53.

Before the processes V0=0.800m3,ν=10mol.V_0 = 0.800\,\mathrm{m}^3, \nu=10\,\mathrm{mol}. p0V0=νRT0.p_0V_0 =\nu R T_0.

After the first process p1V1=νRT0p_1V_1=\nu RT_0 , therefore p0=p1V1V0=2104Pa1.200m30.800m3=3104Pa.p_0 =\dfrac{p_1V_1}{V_0} = \dfrac{2\cdot10^4\,\mathrm{Pa}\cdot1.200\,\mathrm{m}^3}{0.800\,\mathrm{m}^3} = 3\cdot10^4\,\mathrm{Pa}. The temperature is T0=p1V1νR=3104Pa0.800m3108.31289K.T_0 = \dfrac{p_1V_1}{\nu R} = \dfrac{3\cdot10^4\,\mathrm{Pa}\cdot0.800\,\mathrm{m}^3}{10\cdot8.31} \approx 289\,\mathrm{K}.

The second process is adiabatic, so

p1V1γ=p2V2γp2=p1(V1V2)γ=2104Pa(1.2001.480)5/3=14100Pa.p_1V_1^{\gamma}=p_2V_2^{\gamma} \Rightarrow p_2 =p_1\left(\dfrac{V_1}{V_2} \right)^{\gamma} = 2\cdot10^4\,\mathrm{Pa}\cdot\left( \dfrac{1.200}{1.480}\right)^{5/3} = 14100\,\mathrm{Pa}.

The third process is isothermal, p2V2=p3V3,    V3=p2V2p3=14100Pa1.480m321.15103Pa=0.987m3.p_2V_2 = p_3V_3, \;\; V_3 = \dfrac{p_2V_2}{p_3} = \dfrac{14100\,\mathrm{Pa}\cdot1.480\,\mathrm{m}^3}{21.15\cdot10^3\,\mathrm{Pa} } = 0.987\,\mathrm{m^3}.

The temperature is T2=p3V3νR=211500.987m3108.31=251K.T_2 = \dfrac{p_3V_3}{\nu R} = \dfrac{21150\cdot0.987\,\mathrm{m}^3}{10\cdot8.31} = 251\,\mathrm{K}.

The last process is adiabatic, so p3V3γ=p4V4γV4=V3(p3p4)1/γ=0.8m3.p_3V_3^{\gamma} = p_4V_4^{\gamma} \Rightarrow V_4 = V_3\left(\dfrac{p_3}{p_4} \right)^{1/\gamma} = 0.8\,\mathrm{m}^3.

We can see that V4=V0,  p4=p0,V_4=V_0, \; p_4=p_0, so the T4=T0.T_4=T_0. The process is cyclic, it is a kind of Carnot cycle (see https://en.wikipedia.org/wiki/Carnot_cycle).


i) 1) and 3) processes are isothermal, so the work is equal to the heat.

A1=V0V1pdV=νV0V1RT0VdV=νRT0lnV1V0=108.31289ln1.20.8=9740J.A_1 = \int\limits_{V_0}^{V_1}p\,dV =\nu \int\limits_{V_0}^{V_1}\dfrac{RT_0}{V}\,dV =\nu RT_0\ln\dfrac{V_1}{V_0} = 10\cdot8.31\cdot 289\cdot\ln\dfrac{1.2}{0.8} = 9740\,\mathrm{J}.

A3=V2V3pdV=νV2V3RT3VdV=νRT3lnV3V2=108.31251ln0.9871.48=8450J.A_3 =\int\limits_{V_2}^{V_3}p\,dV =\nu \int\limits_{V_2}^{V_3}\dfrac{RT_3}{V}\,dV =\nu RT_3\ln\dfrac{V_3}{V_2} = 10\cdot8.31\cdot 251\cdot\ln\dfrac{0.987}{1.48} = -8450\,\mathrm{J}.


ii) The process is cyclic, it is a kind of Carnot cycle (see https://en.wikipedia.org/wiki/Carnot_cycle).


iii) The change of entropy in isothermal process is (see https://en.wikipedia.org/wiki/Isothermal_process)

ΔS1=νRlnP1P0=108.31ln21043104=33.7J/K.\Delta S_1 = \nu R \ln \dfrac{P_1}{P_0}=10\cdot8.31\cdot\ln \dfrac{2\cdot10^4}{3\cdot10^4} = -33.7\,\mathrm{J/K}.

ΔS3=νRlnP3P2=108.31ln2115014100=33.7J/K.\Delta S_3= \nu R \ln \dfrac{P_3}{P_2}=10\cdot8.31\cdot\ln \dfrac{21150}{14100} = 33.7\,\mathrm{J/K}.

In 2) and 4) adiabatic processes ΔS2=ΔS4=0.\Delta S_2=\Delta S_4 = 0.

So the entropy is constant in this cyclic process.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS