Let the mass of gas "m" be 1 kg, "M_r"be the molar mass, "\\Delta T" be the change of temperature.
In an isobaric process (see https://en.wikipedia.org/wiki/Isobaric_process)
"Q_1 = \\dfrac{m}{M_r} C_p\\Delta T,"
in an isochoric process
"Q_2 = \\dfrac{m}{M_r} C_v\\Delta T,"
where "C_p, \\; C_v" are the molar heat capacities. Therefore, "\\gamma = \\dfrac{C_p}{C_v} = \\dfrac{Q_1}{Q_2} = \\dfrac{1136\\,\\mathrm{kJ\/kg}}{808\\,\\mathrm{kJ\/kg} } \\approx 1.41."
But we should determine mass heat, so we should consider "c_p =\\dfrac{C_p}{M_r}, \\; c_v =\\dfrac{C_v}{M_r}" , so
"Q_1 = m c_p\\Delta T \\; \\text{and} \\; Q_2= m c_v\\Delta T" .
Therefore,
(i) "c_p = \\dfrac{Q_1}{m\\Delta T} = \\dfrac{1136\\,\\mathrm{kJ}}{1\\,\\mathrm{kg}\\cdot80\\,\\mathrm{K}} = 14.2\\,\\mathrm{kJ\/kg\/K}" .
(ii) "c_v = \\dfrac{Q_2}{m\\Delta T} = \\dfrac{808\\,\\mathrm{kJ}}{1\\,\\mathrm{kg}\\cdot80\\,\\mathrm{K}} = 10.1\\,\\mathrm{kJ\/kg\/K}"
(iii) "\\gamma \\approx 1.41."
(iv) "R_p = c_p-c_v = 14.2 \\,\\mathrm{kJ\/kg\/K} -10.1 \\,\\mathrm{kJ\/kg\/K} = 4.1\\,\\mathrm{kJ\/kg\/K}."
(v) "M_r = \\dfrac{R}{R_p} = \\dfrac{8.31\\,\\mathrm{J\/mol\/K}}{4100\\,\\mathrm{J\/kg\/K}} \\approx 0.002\\,\\mathrm{kg\/mol} ."
Comments
Leave a comment