Question #93163
A car traveling at 15 m/s passes a van that is starting from rest with an acceleration of 3 m/s². (a) How long will it take the van to catch up with the car? (b) How far has the car traveled when the van catches up with it?
1
Expert's answer
2019-08-26T10:45:40-0400

Solution:

Coordinate of the car in the moment of time, when the van catches up with it:

x1=x0+υ1tx_1=x_0+\upsilon_1\cdot{t}

Coordinate of the van in the same moment of time:

x2=x0+a2t22x_2=x_0+\frac{a_2\cdot{t^2}}{2}


x1=x2x_1=x_2 , so:


x0+υ1t=x0+a2t22x_0+\upsilon_1\cdot{t}=x_0+\frac{a_2\cdot{t^2}}{2}


a2t22υ1t=0\frac{a_2\cdot{t^2}}{2}-\upsilon_1\cdot{t}=0


t(a2t2υ1)=0t(\frac{a_2\cdot{t}}{2}-\upsilon_1)=0


t=0t=0 is the initial moment of time.


a2t2=υ1\frac{a_2\cdot{t}}{2}=\upsilon_1


So we can find the moment of time, when the van catches up with the car:


t=2υ1a2=2153=10(s)t=\frac{2\cdot{\upsilon_1}}{a_2}=\frac{2\cdot{15}}{3}=10(s)


And the coordinate of catching is:


x=υ1t=1510=150(m)x=\upsilon_1\cdot{t}=15\cdot{10}=150(m)


Answer: t=10s, x=150m.t=10 s,\space{} x=150 m.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS