Solution:
Coordinate of the car in the moment of time, when the van catches up with it:
"x_1=x_0+\\upsilon_1\\cdot{t}"
Coordinate of the van in the same moment of time:
"x_2=x_0+\\frac{a_2\\cdot{t^2}}{2}"
"x_1=x_2" , so:
"x_0+\\upsilon_1\\cdot{t}=x_0+\\frac{a_2\\cdot{t^2}}{2}"
"\\frac{a_2\\cdot{t^2}}{2}-\\upsilon_1\\cdot{t}=0"
"t(\\frac{a_2\\cdot{t}}{2}-\\upsilon_1)=0"
"t=0" is the initial moment of time.
"\\frac{a_2\\cdot{t}}{2}=\\upsilon_1"
So we can find the moment of time, when the van catches up with the car:
"t=\\frac{2\\cdot{\\upsilon_1}}{a_2}=\\frac{2\\cdot{15}}{3}=10(s)"
And the coordinate of catching is:
"x=\\upsilon_1\\cdot{t}=15\\cdot{10}=150(m)"
Answer: "t=10 s,\\space{} x=150 m."
Comments
Leave a comment