The velocity v of a wave in a stretched string depends on tension T, in the string and the mass per unit length U of the string.Obtain an expression for V in terms of T and U, using the method of dimensions
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small v&\\propto \\small T^m.U^n\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small [v]&=\\small LT^{-1}\\\\\n\\small [T]&=\\small MLT^{-2}\\\\\n\\small [U]&=\\small \\frac{[mass]}{[length]}=\\frac{M}{L}=ML^{-1}\\\\\n\\\\\n\\small L.H.S &: \\small LT^{-1}\\\\\n\\small R.H.S &:\\small (MLT^{-2})^m.(ML^{-1})^n\\\\\n&:\\small M^{(m+n)}.L^{(m-n)}.T^{(-2m)}\\\\\n\\\\\n\\small index(L.H.S) &: \\small index(R.H.S)\\\\\n\\small M \\to 0&=\\small m+n \\implies m=-n\\\\\n\\small L \\to 1&=\\small m-n \\\\\n&\\implies \\small m=\\frac{1}{2},n=\\frac{-1}{2}\\\\\n\\small T \\to -2&=\\small -2m\\,(proves\\,the\\,results)\\\\\n\\\\\n\\therefore\\, v&\\propto \\small T^{\\frac{1}{2}}.U^{\\frac{-1}{2}}\\\\\n&\\propto\\small \\sqrt{\\frac{T}{U}}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small v&=\\small k.\\sqrt{\\frac{T}{U}}\n\\end{aligned}"
Comments
Leave a comment