Question #237471

The velocity v of a wave in a stretched string depends on tension T, in the string and the mass per unit length U of the string.Obtain an expression for V in terms of T and U, using the method of dimensions


1
Expert's answer
2021-09-15T11:38:17-0400

Explanations & Calculations


  • We can write the relationship between the quantities as follows

vTm.Un\qquad\qquad \begin{aligned} \small v&\propto \small T^m.U^n \end{aligned}

  • Then comparing both sides for their dimensions, m and n can be found which helps writing a tentative relationship.

[v]=LT1[T]=MLT2[U]=[mass][length]=ML=ML1L.H.S:LT1R.H.S:(MLT2)m.(ML1)n:M(m+n).L(mn).T(2m)index(L.H.S):index(R.H.S)M0=m+n    m=nL1=mn    m=12,n=12T2=2m(provestheresults)vT12.U12TU\qquad\qquad \begin{aligned} \small [v]&=\small LT^{-1}\\ \small [T]&=\small MLT^{-2}\\ \small [U]&=\small \frac{[mass]}{[length]}=\frac{M}{L}=ML^{-1}\\ \\ \small L.H.S &: \small LT^{-1}\\ \small R.H.S &:\small (MLT^{-2})^m.(ML^{-1})^n\\ &:\small M^{(m+n)}.L^{(m-n)}.T^{(-2m)}\\ \\ \small index(L.H.S) &: \small index(R.H.S)\\ \small M \to 0&=\small m+n \implies m=-n\\ \small L \to 1&=\small m-n \\ &\implies \small m=\frac{1}{2},n=\frac{-1}{2}\\ \small T \to -2&=\small -2m\,(proves\,the\,results)\\ \\ \therefore\, v&\propto \small T^{\frac{1}{2}}.U^{\frac{-1}{2}}\\ &\propto\small \sqrt{\frac{T}{U}} \end{aligned}

  • Then a acceptable equation would be

v=k.TU\qquad\qquad \begin{aligned} \small v&=\small k.\sqrt{\frac{T}{U}} \end{aligned}

  • Value of k to be found experimentally.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS