According to this principle, the buoyant force on an object equals the weight of the fluid it displaces. In equation form, Archimedes’ principle is
FB = wfl - mobjectg
where FB is the buoyant force and wfl is the weight of the fluid displaced by the object.
"F_B =0.7\\,N\n\\\\F_B=w_{fl}-m_{object}\\cdot g=\\rho_{fl}\\cdot g\\cdot V_{object}-V_{object}\\cdot \\rho_{object} \\cdot g\n\\\\ \\text{ }\n\\\\ \\implies \\rho_{fl}=\\dfrac{F_B+V_{object}\\cdot \\rho_{object} \\cdot g}{g\\cdot V_{object}}=\\dfrac{F_B}{g\\cdot V_{object}}+\\rho_{object}\n\\\\ \\text{ }\n\\\\ \\implies \\rho_{fl}=\\dfrac{0.7\\,N}{(9.81\\,{m\/s^2})(4\\times10^{-4}\\,m^3)}+6000\\, \\dfrac{kg}{m^3}\n\\\\ \\text{ }\n\\\\ \\implies \\rho_{fl}=6178.39\\dfrac{kg}{m^3}"
In conclusion, the density of the fluid is about 6178.39 kg/m3.
Reference:
Comments
Leave a comment