If P^Q=4i+3j+2k
Find the magnitude of PQ\ I.e[PQ]
(2) If A'=3i-j+2k and B' =2i+3j-K, find:
(1) A'×B'
(2) A'×(2A'+3B)
(3) A'.B'
1)
Magnitude of PQ
∣PQ∣=42+32+22=29|PQ|=\sqrt{4^2+3^2+2^2}=\sqrt{29}∣PQ∣=42+32+22=29
2)
I)A′×B′=∣ijk3−1223−1∣=i(1−6)−j(−3−4)+k(9−(−2))=−5i+7j+11kA'\times{B'}=\begin{vmatrix} i & j & k \\ 3 & -1 & 2\\ 2 & 3 & -1 \end{vmatrix}=i(1-6)-j(-3-4)+k(9-(-2))\\ =-5i+7j+11kA′×B′=∣∣i32j−13k2−1∣∣=i(1−6)−j(−3−4)+k(9−(−2))=−5i+7j+11k
I I)A′×(2A′+3B′)2A′+3B′=2(3i−j+2k)+3(2i+3j−k)2A′+3B′=12i+7j+kA′×(2A′+3B′)=∣ijk3−121271∣=i(−1−14)−j(3−24)+k(21+12)=−15i+21j+33kA'\times (2A'+3B')\\ 2A'+3B'=2(3i-j+2k)+3(2i+3j-k)\\ 2A'+3B'=12i+7j+k\\ A'\times (2A'+3B')=\begin{vmatrix} i & j & k \\ 3 & -1 & 2\\ 12 & 7 & 1 \end{vmatrix}=i(-1-14)-j(3-24)+k(21+12)=-15i+21j+33k\\A′×(2A′+3B′)2A′+3B′=2(3i−j+2k)+3(2i+3j−k)2A′+3B′=12i+7j+kA′×(2A′+3B′)=∣∣i312j−17k21∣∣=i(−1−14)−j(3−24)+k(21+12)=−15i+21j+33k
III)
A′⋅B′=3⋅2−1⋅3+2⋅−1=6−3−2=1A'\cdot{B'}=3\cdot{2}-1\cdot{3}+2\cdot{-1}=6-3-2=1A′⋅B′=3⋅2−1⋅3+2⋅−1=6−3−2=1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments