If P^Q=4i+3j+2k
Find the magnitude of PQ\ I.e[PQ]
(2) If A'=3i-j+2k and B' =2i+3j-K, find:
(1) A'×B'
(2) A'×(2A'+3B)
(3) A'.B'
1)
Magnitude of PQ
"|PQ|=\\sqrt{4^2+3^2+2^2}=\\sqrt{29}"
2)
I)"A'\\times{B'}=\\begin{vmatrix}\n i & j & k \\\\\n 3 & -1 & 2\\\\\n 2 & 3 & -1\n\\end{vmatrix}=i(1-6)-j(-3-4)+k(9-(-2))\\\\\n=-5i+7j+11k"
I I)"A'\\times (2A'+3B')\\\\\n2A'+3B'=2(3i-j+2k)+3(2i+3j-k)\\\\\n2A'+3B'=12i+7j+k\\\\\nA'\\times (2A'+3B')=\\begin{vmatrix}\n i & j & k \\\\\n 3 & -1 & 2\\\\\n12 & 7 & 1\n\\end{vmatrix}=i(-1-14)-j(3-24)+k(21+12)=-15i+21j+33k\\\\"
III)
"A'\\cdot{B'}=3\\cdot{2}-1\\cdot{3}+2\\cdot{-1}=6-3-2=1"
Comments
Leave a comment