Assume
"P=4\\hat{i}+3\\hat{j}+2\\hat{k}"
"Q=2\\hat{i}+3\\hat{j}+\\hat{k}"
"|P|=\\sqrt{16+9+4}=\\sqrt{30}\\\\|Q|=\\sqrt{4+9+1}=\\sqrt{14}"
"P>Q" correct statement
PQ="(4\\hat{i}+3\\hat{j}+2\\hat{k}).(2\\hat{i}+3\\hat{j}+\\hat{k})"
PQ=8+9+2=19
2.
"A=3\\hat{i}-\\hat{j}+2\\hat{k}\\\\B=2\\hat{i}+3\\hat{j}-\\hat{k}"
"A\\times B=\\begin{vmatrix}\n \\hat{i} & \\hat{j}&\\hat{k} \\\\\n 3& -1&2\\\\2&3&-1\n\\end{vmatrix}"
"A\\times B=-5\\hat{i}+7\\hat{j}+11\\hat{k}"
(2)
"(2A+2B)=10\\hat{i}+4\\hat{j}+2\\hat{k}"
"A\\times(2A+2B)=\\begin{vmatrix}\n \\hat{i} & \\hat{j}&\\hat{k} \\\\\n 3& -1&2\\\\10&4&2\n\\end{vmatrix}"
"A\\times(2A+2B)=\\hat{i}(-2-6)-\\hat{j}(6-20)+\\hat{k}(12+10)=-8\\hat{i}+14\\hat{j}+22\\hat{k}"
"A.B=(3\\hat{i}-\\hat{j}+2\\hat{k}).(2\\hat{i}+3\\hat{j}-\\hat{k})=6-6-2=-2"
Comments
Leave a comment