Answer to Question #221149 in Mechanics | Relativity for Neev

Question #221149
a person standing on vertical cliff at height of 180 m above a lake,wantsto jump into the lake but notiecs a rock at the surface level with its furthest edge a distance s from the shore the person realises that with the running start it will be possile to just clear the rock.so the person steps back from the edge a distance d=125/3 and starting freom rest runs at an accelearation that varries in time according to a(x)=2t and then leaves the cliff horizontally.the person just clears the rock.find k if s=k50(take g=10cm/sec(^2) )
1
Expert's answer
2021-07-29T10:45:01-0400

Consider the movement of a person along a cliff:\text{Consider the movement of a person along a cliff:}

a(x)=2ta(x)=2t

a(x)=v(t)a(x) = v'(t)

v(t)=t2+C1v(t)= t^2+C_1

v(0)=0    C1=0v(0) = 0\implies C_1=0

v(t)=t2v(t)= t^2

s(t)=v(t)s(t) = v'(t)

s(t)=t33+C2s(t) = \frac{t^3}{3}+C_2

s(0)=0    C2=0s(0) = 0\implies C_2=0

s(t)=t33s(t) = \frac{t^3}{3}

d=1253d = \frac{125}{3}

s(t1)=1253s(t_1) =\frac{125}{3}

t133=1253\frac{t_1^3}{3}=\frac{125}{3}

t1=5s;vx(t1)=t12=25mst_1=5s;v_x(t_1)=t_1^2=25\frac{m}{s}

vxspeed of a person at the edge of a cliffv_x - \text{speed of a person at the edge of a cliff}

Consider a flight from the edge of the cliff\text{Consider a flight from the edge of the cliff}

to the surface of the lake:\text{to the surface of the lake:}

vertical movement\text{vertical movement}

h=180mh = 180m

h=gt222h =\frac{gt_2^2}{2}

t2=2hg=218010=6st_2=\sqrt{\frac{2h}{g}}=\sqrt{\frac{2*180}{10}}=6s

horizontal movement\text{horizontal movement}

s=vxt2s = v_xt_2

s=50ks=50k

k=vxt250=25650=3k= \frac{v_xt_2}{50}= \frac{25*6}{50}=3

Answer: k=3\text{Answer: }k =3



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment