A 50 kg wooden box is pulled up a plane inclined at 30o to the horizontal with an acceleration of 5ms-2. The pulling force, P, is applied parallel to the plane and the coefficient of kinetic friction between the box and the plane is 0.3.
i. Draw a diagram showing all the forces acting on the wooden box.
ii. Find the normal reaction, NA
iii. Find the pulling force, P.
iv. If the wooden box was pulled with a constant velocity, determine the pulling force that would be required to pull the box up the incline
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small N_A-mg\\cos 30&=\\small 0\\\\\n\\small N_A&=\\small 50kg\\times9.8ms^{-2}\\times\\cos30\\\\\n&=\\small \\bold{424.35\\,N}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small P-f-mg\\sin30&=\\small ma\\\\\n\\small P&=\\small f+mg\\sin30+ma\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small f&=\\small \\mu R=0.3\\times424.35N\\\\\n&=\\small 127.31\\,N\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small P&=\\small 127.31+(50\\times9.8\\times\\sin30)+(50kg\\times5\\,ms^{-2})\\\\\n&=\\small \\bold{622.31\\,N}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small P_1&=\\small f+mg\\sin30+0\\\\\n&=\\small \\bold{372.31\\,N}\n\\end{aligned}"
Comments
Leave a comment