Two waves travelling in the same direction are given by: y1 = 0.2 sin(3πx-20t+φ) and y2 = 0.2 sin(3πx-20t), where x and y are in meters and t is in seconds. If the two waves start at the same moment, then the path difference, ∆x, corresponding to a fully destructive interference is:
1/2 m
1/3 m
3/4 m
2/3 m
4/3 m
"y_1=0.2\\sin(3\\pi x-20t +\\phi)"
"y_2=0.2\\sin(3\\pi x-20t)"
"y=y_1+y_2"
"y=0.04\\sin\\bigg(3\\pi x-20t+\\dfrac{\\phi}{2}\\bigg)\\cos\\dfrac{\\phi}{2}"
Now,
"k=\\dfrac{2\\pi}{\\lambda}=3\\pi"
"\\lambda=\\dfrac{2\\pi}{3\\pi}=\\dfrac{2}{3}"
Path difference for destructive interference,
"\\Delta x=\\bigg(n+\\dfrac{1}{2}\\bigg)\\lambda\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space n=0,1,2,3"
for n = 0
"\\Delta x=\\dfrac{\\lambda}{2}=\\dfrac{1}{3}"
Therefore path difference, "\\Delta x=\\dfrac{1}{3}\\space m"
Comments
Leave a comment