The left end of a taut string of length L, is connected to a vibrator with a fixed frequency f. The right end of the string is tied to a suspended object of varying mass, m, through a pulley. For a mass m1 of the object, a standing wave with one loop is observed. For a mass m2 of the object, a standing wave with two loops is observed. What is the ratio "m2 / m1 = ?"
0.0625
0.25
2
4
16
Gives string length =L
Frequency=n
Mass (m)=m1
Loop(n)=1
Mass(m)=m2
Loop(n)=2
Case (1)
"L=\\frac{n\\lambda}{2}"
n=1
"L=\\frac{\\lambda}{2}"
"\\lambda=2L"
"v=\\sqrt\\frac{T}{m_1}"
"\\frac{T}{m_1}=({n\\lambda})^2"
"\\frac{T}{m_1}=({n\\times 2L})^2"
"m_1=\\frac{T}{v^2}"
"m_1=\\frac{T}{4(n\\lambda)^2}"
Case(2)
n=2
"L=\\frac{2\\lambda}{2}"
"L=\\lambda"
"\\frac{T}{m_2}=({n\\times L})^2"
"m_2=\\frac{T}{(n\\lambda)^2}"
"\\frac{m_2}{m_1}=\\frac{\\frac{T}{(n\\lambda)^2}}{\\frac{T}{4(n\\lambda)^2}}=\\frac{4}{1}"
Comments
Leave a comment