wo sinusoidal waves of wavelength λ = 2/3 m and amplitude A = 6 cm and differing with their phase constant, are travelling to the right with same velocity v = 50 m/s. The resultant wave function y_res (x,t) will have the form:
y_res (x,t) = 12(cm) cos(φ/2) sin(150πx-3πt+φ/2).
y_res (x,t) = 12(cm) cos(φ/2) sin(3πx+150πt+φ/2).
y_res (x,t) = 12(cm) cos(φ/2) sin(150πx+3πt+φ/2).
y_res (x,t) = 12(cm) cos(φ/2) sin(3πx-180πt+φ/2).
y_res (x,t) = 12(cm) cos(φ/2) sin(3πx-150πt+φ/2).
Clear selection
Two identical sinusoidal waves with w
Let two waves, "y_1=A\\sin(kx-\\omega t)" and "y_2=A\\sin(kx-\\omega t+\\phi_o)" be travelling in the same direction,
"\\phi_o" : Phase difference
Resultant wave, "y=y_1+y_2"
"y=A\\sin(kx-\\omega t)+A\\sin(kx-\\omega t+\\phi_o)"
"y=A\\sin(kx\\pm\\omega t+\\alpha)"
"\\tan \\alpha=\\dfrac{\\sin\\phi_o}{1+\\cos\\phi_o}"
From question,
"A=6\\space cm"
"\\lambda=\\dfrac{2}{3}\\space m"
"v=50\\space m\/s"
"\\omega=\\dfrac{2\\pi v}{\\lambda}=150\\pi"
"k=\\dfrac{2\\pi}{\\lambda}=3\\pi"
"\\phi_o=" Phase constant = "3\\pi"
"\\tan \\alpha=\\dfrac{\\sin3\\pi}{1+\\cos3\\pi}"
"\\alpha=\\tan^{-1}\\infin"
"\\alpha=\\dfrac{\\pi}{2}"
As wave travels in left direction equation of wave will be
"y=A\\sin(kx+\\omega t+\\alpha)"
"y=6\\sin\\bigg(3\\pi x+150\\pi t+\\dfrac{\\pi}{2}\\bigg)"
Comments
Leave a comment