Question #195518

A standing wave on a string of length L = 3 m is described by the following equation: y(x,t) = 0.08 sin⁡(2πx) cos(300πt). The fundamental frequency, f1, is:


25


1
Expert's answer
2021-05-20T11:25:00-0400

Gives

Length (L)=3 m

y(x,t)=0.08sin(2πx)cos(300πt)(1)y(x,t)=0.08sin(2\pi x)cos(300\pi t)\rightarrow(1)

Fundamental frequency f1=?f_1=?

y(x,t)=Asin(kx)cos(wt)(2)y(x,t)=Asin(k x)cos(wt)\rightarrow(2)

We know that

2L=nλ2L=n\lambda

Put value

2×3=n×12\times3=n\times1

n=6n=6

K=2πλK=\frac{2\pi}{\lambda}

eqution (1)and(2)comperision

2π=2πλ2\pi=\frac{2\pi}{\lambda}

λ=1m\lambda=1m

Number of node =6

Wave length=1m

Fundamental frequency f1=w2πnf_1=\frac{\frac{w}{2\pi}}{n}

Put value

f1=300π2π6f_1=\frac{\frac{300\pi}{2\pi}}{6}

f1=25f_1=25


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS