A particle executes simple harmonic motion with an amplitude of 2.7 cm. At what positive displacement from the midpoint of its motion does its speed equal one half of its maximum speed? Answer in units of cm.
Given,
Amplitude (A)=2.7 cm
Maximum speed (V)=Vmax2\frac{V_{max}}{2}2Vmax
V=ωa2−x2V=\omega \sqrt{a^2-x^2}V=ωa2−x2
Now, substituting the values,
Vmax2=ωa1−x2a2\frac{V_{max}}{2}=\omega a\sqrt{1-\frac{x^2}{a^2}}2Vmax=ωa1−a2x2
⇒Vmax2=Vmax1−x2a2\Rightarrow \frac{V_{max}}{2}=V_{max}\sqrt{1-\frac{x^2}{a^2}}⇒2Vmax=Vmax1−a2x2
⇒12=1−x2a2\Rightarrow \frac{1}{2}=\sqrt{1-\frac{x^2}{a^2}}⇒21=1−a2x2
Now, squaring both side,
⇒14=1−x2a2\Rightarrow \frac{1}{4}=1-\frac{x^2}{a^2}⇒41=1−a2x2
⇒14=1+x22.72\Rightarrow \frac{1}{4}=1+\frac{x^2}{2.7^2}⇒41=1+2.72x2
⇒x22.72=34\Rightarrow \frac{x^2}{2.7^2}=\frac{3}{4}⇒2.72x2=43
⇒x2=34×2.72\Rightarrow x^2=\frac{3}{4}\times 2.7^2⇒x2=43×2.72
⇒x=2.7×32cm\Rightarrow x = 2.7\times \frac{\sqrt{3}}{2}cm⇒x=2.7×23cm
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments