Question #180295

A particle executes simple harmonic motion with an amplitude of 2.7 cm. At what positive displacement from the midpoint of its motion does its speed equal one half of its maximum speed? Answer in units of cm.


1
Expert's answer
2021-04-13T06:30:33-0400

Given,

Amplitude (A)=2.7 cm

Maximum speed (V)=Vmax2\frac{V_{max}}{2}

V=ωa2x2V=\omega \sqrt{a^2-x^2}

Now, substituting the values,

Vmax2=ωa1x2a2\frac{V_{max}}{2}=\omega a\sqrt{1-\frac{x^2}{a^2}}

Vmax2=Vmax1x2a2\Rightarrow \frac{V_{max}}{2}=V_{max}\sqrt{1-\frac{x^2}{a^2}}

12=1x2a2\Rightarrow \frac{1}{2}=\sqrt{1-\frac{x^2}{a^2}}

Now, squaring both side,

14=1x2a2\Rightarrow \frac{1}{4}=1-\frac{x^2}{a^2}

Now, substituting the values,

14=1+x22.72\Rightarrow \frac{1}{4}=1+\frac{x^2}{2.7^2}


x22.72=34\Rightarrow \frac{x^2}{2.7^2}=\frac{3}{4}


x2=34×2.72\Rightarrow x^2=\frac{3}{4}\times 2.7^2


x=2.7×32cm\Rightarrow x = 2.7\times \frac{\sqrt{3}}{2}cm



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS