5) A block-spring system oscillates in a simple harmonic motion on a frictionless horizontal table. Its displacement varies with time according to x (t) = 0.2 cos (2t - n / 4). The earliest time the particle reaches position x = 0.1 m is
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small 0.1&=\\small 0.2\\cos(2t-\\frac{\\pi }{4})\\\\\n\\small \\frac{1}{2}=\\cos\\frac{\\pi}{3}&=\\small \\cos(2t-\\frac{\\pi}{4})\\\\\n\\small \\frac{\\pi}{3}&=\\small 2t-\\frac{\\pi}{4}\\\\\n\\small 2t&=\\small \\frac{7\\pi}{12}\\\\\n\\small t&=\\small \\frac{7\\pi}{24}\\\\\n&=\\small \\bold{1.833\\,s}\n\\end{aligned}" "\\qquad\\qquad\n\\begin{aligned}\n\\text{Extra }&\\text{ Information}\\\\\n\\small x=0&\\to t=\\frac{T}{4}\\\\\n\\small \\frac{\\pi}{2}&=\\small \\Bigg(2\\Big(\\frac{T}{4}\\Big)-\\frac{\\pi}{4}\\Bigg)\\\\\n\\small \\frac{T}{4}&=\\small \\frac{3\\pi}{8}\\approx 1.178\\,s\\\\\n\\small T&=\\small 4.712\\,s\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\omega&=\\small \\frac{2\\pi}{T}=2\\\\\n\\small T&=\\small \\pi \\approx3.142\\,s \n\\end{aligned}"
Comments
Leave a comment