Question #168473

A block slides from rest from the top of an inclined plane 8 m long which is inclined 35° with  the horizontal. If the coefficient of kinetic friction is 0.20, determine how long it will take the block to reach the bottom of the plane.


1
Expert's answer
2021-03-03T11:24:18-0500

Let mass of block = m kg

Taking acceleration due to gravity = 9.8 m/s2


Coefficient of friction, μ=0.20\mu=0.20

Length of inclined plane = 8 m

From the above figure, balancing the forces perpendicular to the inclined surface,

N=mgcosθ                                (1)N=mgcos\theta\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space(1)

Balancing the forces along the inclined plane

ma=mgsinθμNma=mgsinθμmgcosθ             from(1)a=g(sinθμcosθ)ma=mgsin\theta -\mu N\\\Rightarrow ma=mgsin\theta-\mu mgcos\theta\space\space\space\space\space\space\space\space\space\space\space\space\space from(1)\\\Rightarrow a=g(sin\theta-\mu cos\theta)


From Newton's laws of motion,

s=ut+12at2t=2sa                         Since u=0 m/s2s=ut+\dfrac{1}{2}at^2\\\Rightarrow t=\sqrt{\dfrac{2s}{a}}\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space Since\space u=0\space m/s^2

t=2×89.8(sin35°0.20cos35°)t=1.996 s2 s\Rightarrow t=\sqrt{\dfrac{2\times8}{9.8(sin35\degree-0.20cos35\degree)}}\\\Rightarrow t=1.996\space s\approx2\space s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS