A block slides from rest from the top of an inclined plane 8 m long which is inclined 35° with the horizontal. If the coefficient of kinetic friction is 0.20, determine how long it will take the block to reach the bottom of the plane.
Let mass of block = m kg
Taking acceleration due to gravity = 9.8 m/s2
Coefficient of friction, "\\mu=0.20"
Length of inclined plane = 8 m
From the above figure, balancing the forces perpendicular to the inclined surface,
"N=mgcos\\theta\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space(1)"
Balancing the forces along the inclined plane
"ma=mgsin\\theta -\\mu N\\\\\\Rightarrow ma=mgsin\\theta-\\mu mgcos\\theta\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space from(1)\\\\\\Rightarrow a=g(sin\\theta-\\mu cos\\theta)"
From Newton's laws of motion,
"s=ut+\\dfrac{1}{2}at^2\\\\\\Rightarrow t=\\sqrt{\\dfrac{2s}{a}}\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space Since\\space u=0\\space m\/s^2"
"\\Rightarrow t=\\sqrt{\\dfrac{2\\times8}{9.8(sin35\\degree-0.20cos35\\degree)}}\\\\\\Rightarrow t=1.996\\space s\\approx2\\space s"
Comments
Leave a comment