Answer to Question #163668 in Mechanics | Relativity for particle vs rigid bodies

Question #163668

A uniform ladder rests against a smooth wall so that it makes an angle of 600 with the ground. The ladder is 10.0 m long and weighs 150 N. How far can a 250 N child go up the ladder before it gets slips?

The coefficient of friction between the ladder and the ground is 0.4.


1
Expert's answer
2021-02-15T00:54:24-0500

𝜇1 = 0.400 − coefficient of friction between the ladder and the ground;

𝜇2 = 0.450 − coefficient of friction between the ladder and the wall;

𝛼 = 60° − angle which ladder makes with the ground;

𝑁1 − reaction force from the ground;

𝑁2 − reaction force from the wall;

𝑃1 = 150𝑁 − weight of the ladder;

𝑃2 = 250𝑁 − weight of the child;

𝐿 = 10.0m − length of the ladder.


We will consider the extreme case when the person is standing at a maximum distance d from the beginning of the ladder.

Newton's second law for the ladder (the first law of equilibrium):

Ffr1+Ffr2+P1+P2+N1+N2=0,\vec{F_{fr1}}+\vec{F_{fr2}}+\vec{P_1}+\vec{P_2}+\vec{N_1}+\vec{N_2}=\vec{0},

Projection of the law on the X-axis:

N2Ffr1=0,N_2-F_{fr1}=0, (1)

projection of the law on the X-axis:

N1+Ffr2P1P2=0.N_1+F_{fr2}-P_1-P_2=0. (2)

Law of dry friction:

Ffr1=μ1N1F_{fr1}=\mu_1N_1 (3)

Ffr2=μ2N2F_{fr2}=\mu_2N_2 (4)

(3) and (4) in (1) and (2):

(3) → (1):  N2μ1N1=0N_2-\mu_1N1=0

N1=N2μ1N_1=\frac{N_2}{\mu_1} (5)

(4) → (2): N1+μ2N2P1P2=0N_1+\mu_2N_2-P_1-P_2=0

(5) → (2):

N2μ1+μ2N2P1P2=0\frac{N_2}{\mu_1}+\mu_2N_2-P_1-P_2=0 ,

N2=μ1(P1+P2)1+μ1μ2=135.6 N,N_2=\frac{\mu_1(P_1+P_2)}{1+\mu_1\mu_2}=135.6~\text{N},

Ffr2=μ2N2=61.02 N.F_{fr2}=\mu_2N_2=61.02~\text{N}.

The second law of equilibrium:

MP1+MP2+MFfr2+MN2=0,M_{P_1}+M_{P_2}+M_{F_{fr2}}+M_{N_2}=0, (6)

(MN1=MFfr1=0M_{N_1}=M_{F_{fr1}}=0 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑟𝑚 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑓𝑜𝑟𝑐𝑒𝑠 𝑖𝑠 𝑧𝑒𝑟𝑜),

MP1=P1L2cosαM_{P_1}=-P_1\cdot \frac L2 cos\alpha (𝑚𝑖𝑛𝑢𝑠 𝑠𝑖𝑔𝑛 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒)

MP2=P2dcosα,M_{P_2}=-P_2\cdot dcos\alpha,

MFfr2=Ffr2Lcosα,M_{F_{fr2}}=F_{fr2}\cdot Lcos\alpha,

MN2=N2Lsinα,M_{N_2}=N_2\cdot Lsin\alpha,

→ (6):

Ffr2Lcosα+N2LsinαP2dcosαP1L2cosα=0,F_{fr2}\cdot Lcos\alpha+N_2\cdot Lsin\alpha-P_2\cdot dcos\alpha-P_1\cdot \frac L2 cos \alpha=0,

d=1P2cosα(Ffr2Lcosα+N2LsinαP1L2cosα)=8.84 m.d=\frac{1}{P_2 cos\alpha}\cdot(F_{fr2}\cdot Lcos\alpha+N_2\cdot Lsin\alpha-P_1\cdot \frac L2 cos \alpha)=8.84~\text{m}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment