Question #163586

In the vertical jump, an athlete starts from a crouch and jumps upward as high as possible. Even the best athletes spend little more than 1.00 s in the air (their “hang time”). Treat the athlete as a particle and let Ymax be his maximum height above the floor. To explain why he seems to hang in the air, calculate the ratio of the time he is above Ymax/2  to the time it takes him to go from the floor to that height. Ignore air resistance.


1
Expert's answer
2021-02-15T00:55:50-0500

First, we need to get an expression for vov_o. When the athlete reaches the maximum height, v = 0. So,

                                                               v2=vo22gymaxv^2 = v_o^2-2gy_{max}

                                                                   0=vo22gymax0 = v_o^2-2gy_{max}

                                                                vo=2gymaxv_o=\sqrt{2gy_{max}}

The time the athlete spends above ymax2\large\frac{y_{max}}{2} :

For this case,  we are interested in the motion from ymax2\large\frac{y_{max}}{2} up and back to ymax2\large\frac{y_{max}}{2} again so

y=yo=ymax2y = y _o=\large\frac{y_{max}}{2}

                                    yyo=v0tabove12gtabove2y -y_o = v_0t_{above}- \frac{1}{2}gt^2_{above}

                                          0=v0tabove12gtabove20= v_0t_{above}- \frac{1}{2}gt^2_{above}

                                              vo=12gtabovev_o = \frac{1}{2}gt_{above}

                                                 tabove=2vog\therefore t_{above} = \large\frac{2v_o}{g}

Substituting for vov_o we get:

                                                       tabove=2gymaxgt_{above} = \large\frac{\sqrt{2gy_{max}}}{g}

The time the athlete takes to reach ymax2\large\frac{y_{max}}{2} jumping from the ground:

                                                    yyo=v0tbelow12gtbelow2y -y_o = v_0t_{below}- \frac{1}{2}gt^2_{below}

                                                  ymax2=v0tbelow12gtbelow2\frac{y_{max}}{2} = v_0t_{below}- \frac{1}{2}gt^2_{below}

Rearranging the equation and multiplying by 2 to put the equation into the quadratic form:

                                            gtbelow22votbelow+ymax=0gt^2_{below}-2v_ot_{below}+y_{max} = 0

Now we have a quadratic equation with a=g, b=2vo and c=ymaxa = g, \space b = -2v_o \space and \space c = y_{max}

                                    tbelow=b±b24ac2at_{below} = \large\frac{-b\pm \sqrt{b^2-4ac}}{2a}

                                   tbelow=2vo±4vo24gymax2gt_{below} = \large\frac{-2v_o\pm \sqrt{4v_o^2-4gy_{max}}}{2g}

                                        tbelow=vo±vo2gymaxgt_{below} = \large\frac{-v_o\pm \sqrt{v_o^2-gy_{max}}}{g}

Substituting vo=2gymaxv_o = \sqrt{2gy_{max}} we get:

                                          tbelow=2gymax±2gymaxgymaxgt_{below} = \large\frac{\sqrt{2gy_{max}}\pm \sqrt{2gy_{max}-gy_{max}}}{g}

                                         tbelow=2gymax±gymaxgt_{below} = \large\frac{\sqrt{2gy_{max}}\pm \sqrt{gy_{max}}}{g}

  We take the value with minus sign in middle of the numerator. The athlete pass by the point

ymax2\large\frac{y_{max}}{2} twice, once when rising up and again when falling down the minus for the rising up event and the plus for the falling down event.

                                  \therefore tbelow=2gymax±gymaxg=gymaxg(21)t_{below} = \large\frac{\sqrt{2gy_{max}}\pm \sqrt{gy_{max}}}{g} = \frac{\sqrt{gy_{max}}}{g}(\sqrt{2}-1)

     So, The ratio is:

       tabovetbelow\large\frac{t_{above}}{t_{below}} =22gymaxgggymax(21)= \large\frac{2\sqrt{2gy_{max}}}{g} * \frac{g}{\sqrt{gy_{max}}(\sqrt2 - 1)}  =2221= \large\frac{2\sqrt2}{\sqrt2-1} =6.83= 6.83

The athlete spends more time above ymax2\large\frac{y_{max}}{2} more than below it by a factor of 13.66, so they seem to be hanging in the air


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS