Explanations & Calculations
a)
"\\qquad\\qquad\n\\begin{aligned}\n\\small R+tS&-W=\\small0\\\\\n\\small R+tS &= \\small W\\cdots(1)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small S-uR&= \\small 0\\\\\n\\small S&= \\small uR\\cdots(2)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small R+t(uR)&= \\small W\\\\\n\\small R &=\\small \\frac{W}{(1+ut)}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small R(2a\\cos\\theta)-uR(2a\\sin\\theta)-W(a\\cos\\theta)&= \\small 0\\\\\n\\small 2R(1-u\\tan\\theta)&= \\small W\\\\\n\\small R&= \\small \\frac{W}{2(1-u\\tan\\theta)}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{1}{2(1-u\\tan\\theta)}&= \\small \\frac{1}{(1+ut)}\\\\\n\\small \\tan\\theta&= \\small \\frac{1-ut}{2u}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small\\frac{5}{12}&= \\small \\frac{1-ut}{2u}\\\\\n\\small 5u+6ut-6&= \\small 0\n\\end{aligned}"
b)
"\\qquad\\qquad\n\\begin{aligned}\n\\small5u+6(\\frac{1}{2})-6&= \\small0\\\\\n\\small u&= \\small \\frac{3}{5}(<1:\\checkmark)\\\\\n\\\\\n\\small t (\\frac{3}{5})&= \\small\\frac{1}{2}\\\\\n\\small t&= \\small \\frac{5}{6}(<1:\\checkmark)\n\\end{aligned}"
c)
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\delta m&= \\small \\delta A\\times \\rho\\\\\n\\small\\delta m&= \\small 2r\\sin\\theta\\times\\delta x\\times\\rho\\\\\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small M&= \\small \\frac{\\pi r^2}{2}\\times \\rho\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small Mg\\times x'&= \\small \\int\\delta mg\\times x\\\\\n\\small \\frac{\\pi r^2\\rho}{2}g\\times x'&= \\small\\int 2r\\sin \\theta.\\rho .g. x.dx\\cdots (1)\\\\\n\n\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small x&= \\small r\\cos\\theta\\\\\n\\small dx&= \\small -r\\sin\\theta d\\theta\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \n\\end{aligned}" "\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{\\pi r^2\\rho g}{2}x'&= \\small -\\int 2r^3\\sin^2\\theta\\cos\\theta .\\rho.g.d\\theta\\\\\n\\small x'&= \\small \\frac{-4r}{\\pi}\\int\\sin^2\\theta\\cos\\theta.d\\theta\\\\\n\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small x'&= \\small \\frac{-4r}{\\pi}\\int_\\frac{\\pi}{2}^0\\sin^2\\theta .d(\\sin\\theta)\\\\\n&= \\small \\frac{-4r}{\\pi}\\bigg[\\frac{\\sin^3\\theta}{3}\\big|_{\\frac{\\pi}{2}}^0\\\\\n\\small x'&= \\small \\frac{4r }{3\\pi}\n\\end{aligned}"
Comments
Leave a comment