Question #157139
A uniform ladder of weight W abd length 2a rests in limiting equilibrium with one end on a rough horizontal ground and the other end on a rough vertical wall. The coefficients of friction between the ladder and the ground and between the ladder and the wall are u and t respectively.
(a) Show that 5u + 6tu - 6 = 0
(b) Find the values of u and t, given that ut = 1/2
(c) Show by integration that tge centroid of a uniform semi-circular lamina of radius a from the centre is 4a/(3*pie).
1
Expert's answer
2021-02-05T11:48:28-0500

Explanations & Calculations


a)

  • For this consider the figure attached


  • Considering the vertical equilibrium,

R+tSW=0R+tS=W(1)\qquad\qquad \begin{aligned} \small R+tS&-W=\small0\\ \small R+tS &= \small W\cdots(1) \end{aligned}

  • Fromt he horizi=ontal equilibrium,

SuR=0S=uR(2)\qquad\qquad \begin{aligned} \small S-uR&= \small 0\\ \small S&= \small uR\cdots(2) \end{aligned}

  • By (1) and (2),

R+t(uR)=WR=W(1+ut)\qquad\qquad \begin{aligned} \small R+t(uR)&= \small W\\ \small R &=\small \frac{W}{(1+ut)} \end{aligned}

  • To get a relationship in term only of friction coefficients, another equation is needed. Next is to consider of some torque.
  • Consider rightward torque about the point: ladder touches the wall,

R(2acosθ)uR(2asinθ)W(acosθ)=02R(1utanθ)=WR=W2(1utanθ)\qquad\qquad \begin{aligned} \small R(2a\cos\theta)-uR(2a\sin\theta)-W(a\cos\theta)&= \small 0\\ \small 2R(1-u\tan\theta)&= \small W\\ \small R&= \small \frac{W}{2(1-u\tan\theta)} \end{aligned}

  • Now removing R we get,

12(1utanθ)=1(1+ut)tanθ=1ut2u\qquad\qquad \begin{aligned} \small \frac{1}{2(1-u\tan\theta)}&= \small \frac{1}{(1+ut)}\\ \small \tan\theta&= \small \frac{1-ut}{2u} \end{aligned}

  • Now, to get a relationship between u & t, tanθ\small \tan\theta should be known as it depends on the system.
  • Therefore, some data is missing from what you have provided.
  • Anyway when the θ=tan1(512)\small \theta=\tan^{-1}(\frac{5}{12}) , we get the needed result

512=1ut2u5u+6ut6=0\qquad\qquad \begin{aligned} \small\frac{5}{12}&= \small \frac{1-ut}{2u}\\ \small 5u+6ut-6&= \small 0 \end{aligned}

b)

  • When ut=1/2,

5u+6(12)6=0u=35(<1:)t(35)=12t=56(<1:)\qquad\qquad \begin{aligned} \small5u+6(\frac{1}{2})-6&= \small0\\ \small u&= \small \frac{3}{5}(<1:\checkmark)\\ \\ \small t (\frac{3}{5})&= \small\frac{1}{2}\\ \small t&= \small \frac{5}{6}(<1:\checkmark) \end{aligned}

c)

  • For this consider the figure attached.


  • Consider an infinitesimal strip located at distance x\small x from the center.
  • If the density of the lamina is ρ\rho, then we can write the follows.

δm=δA×ρδm=2rsinθ×δx×ρ\qquad\qquad \begin{aligned} \small \delta m&= \small \delta A\times \rho\\ \small\delta m&= \small 2r\sin\theta\times\delta x\times\rho\\ \end{aligned}

  • Mass of the lamina

M=πr22×ρ\qquad\qquad \begin{aligned} \small M&= \small \frac{\pi r^2}{2}\times \rho \end{aligned}

  • Since the lamina is homogeneous, the centroid should lye totally on the x axis. And if it lies at some x\small x' distance from the center, we can write as follows for the system & each infinitesimal strips regarding the torque

Mg×x=δmg×xπr2ρ2g×x=2rsinθ.ρ.g.x.dx(1)\qquad\qquad \begin{aligned} \small Mg\times x'&= \small \int\delta mg\times x\\ \small \frac{\pi r^2\rho}{2}g\times x'&= \small\int 2r\sin \theta.\rho .g. x.dx\cdots (1)\\ \end{aligned}

  • To remove x & dx, we can write,

x=rcosθdx=rsinθdθ\qquad\qquad \begin{aligned} \small x&= \small r\cos\theta\\ \small dx&= \small -r\sin\theta d\theta \end{aligned}

  • By (1),

\qquad\qquad \begin{aligned} \small \end{aligned} πr2ρg2x=2r3sin2θcosθ.ρ.g.dθx=4rπsin2θcosθ.dθ\qquad\qquad \begin{aligned} \small \frac{\pi r^2\rho g}{2}x'&= \small -\int 2r^3\sin^2\theta\cos\theta .\rho.g.d\theta\\ \small x'&= \small \frac{-4r}{\pi}\int\sin^2\theta\cos\theta.d\theta\\ \end{aligned}

  • Evaluating over π2\large\frac{\pi}{2}— 0,

x=4rππ20sin2θ.d(sinθ)=4rπ[sin3θ3π20x=4r3π\qquad\qquad \begin{aligned} \small x'&= \small \frac{-4r}{\pi}\int_\frac{\pi}{2}^0\sin^2\theta .d(\sin\theta)\\ &= \small \frac{-4r}{\pi}\bigg[\frac{\sin^3\theta}{3}\big|_{\frac{\pi}{2}}^0\\ \small x'&= \small \frac{4r }{3\pi} \end{aligned}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS