Question #157112
An oscillatory motion has a period of 50.0s and an amplitude of 20.0cm. Determine its maximum acceleration and mechanical energy
1
Expert's answer
2021-01-31T03:39:04-0500

a)

amax=Aω2=A4π2T2,a_{max}=-A\omega^2=-A\dfrac{4\pi^2}{T^2},amax=0.2 m4π2(50.0 s)2=3.16103 ms2.a_{max}=-0.2\ m\cdot\dfrac{4\pi^2}{(50.0\ s)^2}=-3.16\cdot10^{-3}\ \dfrac{m}{s^2}.


The magnitude of the maximum acceleration is 3.16103 ms23.16\cdot10^{-3}\ \dfrac{m}{s^2}.

b) By the definition of the law of conservation of energy, we have:


ME=U+K=12kx2+12mv2.ME=U+K=\dfrac{1}{2}kx^2+\dfrac{1}{2}mv^2.

An oscillatory motion of the oscillator is defined by the position:


x(t)=Acos(ωt+ϕ)x(t)=Acos(\omega t+\phi)

and velocity:


v(t)=Aωcos(ωt+ϕ).v(t)=-A\omega cos(\omega t+\phi).

Then, we can write:


ME=12kA2cos2(ωt+ϕ)+12mA2sin2(ωt+ϕ).ME=\dfrac{1}{2}kA^2cos^2(\omega t+\phi)+\dfrac{1}{2}mA^2sin^2(\omega t+\phi).

Applying trigonometric identity cos2θ+sin2θ=1cos^2\theta+sin^2\theta=1 and ω=km\omega=\sqrt{\dfrac{k}{m}}, we get:


ME=12kA2=12k(0.2 m)2=0.02 m2k.ME=\dfrac{1}{2}kA^2=\dfrac{1}{2}\cdot k\cdot(0.2\ m)^2=0.02\ m^2\cdot k.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS