a)
a m a x = − A ω 2 = − A 4 π 2 T 2 , a_{max}=-A\omega^2=-A\dfrac{4\pi^2}{T^2}, a ma x = − A ω 2 = − A T 2 4 π 2 , a m a x = − 0.2 m ⋅ 4 π 2 ( 50.0 s ) 2 = − 3.16 ⋅ 1 0 − 3 m s 2 . a_{max}=-0.2\ m\cdot\dfrac{4\pi^2}{(50.0\ s)^2}=-3.16\cdot10^{-3}\ \dfrac{m}{s^2}. a ma x = − 0.2 m ⋅ ( 50.0 s ) 2 4 π 2 = − 3.16 ⋅ 1 0 − 3 s 2 m .
The magnitude of the maximum acceleration is 3.16 ⋅ 1 0 − 3 m s 2 3.16\cdot10^{-3}\ \dfrac{m}{s^2} 3.16 ⋅ 1 0 − 3 s 2 m .
b) By the definition of the law of conservation of energy, we have:
M E = U + K = 1 2 k x 2 + 1 2 m v 2 . ME=U+K=\dfrac{1}{2}kx^2+\dfrac{1}{2}mv^2. ME = U + K = 2 1 k x 2 + 2 1 m v 2 . An oscillatory motion of the oscillator is defined by the position:
x ( t ) = A c o s ( ω t + ϕ ) x(t)=Acos(\omega t+\phi) x ( t ) = A cos ( ω t + ϕ ) and velocity:
v ( t ) = − A ω c o s ( ω t + ϕ ) . v(t)=-A\omega cos(\omega t+\phi). v ( t ) = − A ω cos ( ω t + ϕ ) . Then, we can write:
M E = 1 2 k A 2 c o s 2 ( ω t + ϕ ) + 1 2 m A 2 s i n 2 ( ω t + ϕ ) . ME=\dfrac{1}{2}kA^2cos^2(\omega t+\phi)+\dfrac{1}{2}mA^2sin^2(\omega t+\phi). ME = 2 1 k A 2 co s 2 ( ω t + ϕ ) + 2 1 m A 2 s i n 2 ( ω t + ϕ ) . Applying trigonometric identity c o s 2 θ + s i n 2 θ = 1 cos^2\theta+sin^2\theta=1 co s 2 θ + s i n 2 θ = 1 and ω = k m \omega=\sqrt{\dfrac{k}{m}} ω = m k , we get:
M E = 1 2 k A 2 = 1 2 ⋅ k ⋅ ( 0.2 m ) 2 = 0.02 m 2 ⋅ k . ME=\dfrac{1}{2}kA^2=\dfrac{1}{2}\cdot k\cdot(0.2\ m)^2=0.02\ m^2\cdot k. ME = 2 1 k A 2 = 2 1 ⋅ k ⋅ ( 0.2 m ) 2 = 0.02 m 2 ⋅ k .
Comments