Answer to Question #136659 in Mechanics | Relativity for abdulwahab

Question #136659
The motion of a rocket burning its fuel at a constant rate while moving through empty
interstellar space can be described by
x(t) = uext + uex
1
b
− t

ln(1 − bt).
uex and b are constants (uex is the exhaust velocity of the gases at the tail of the rocket,
and b is proportional to the rate of fuel consumption). For this question, you should
know that ln is the inverse of the exponential function, that is, ln(e
x
) = x. Also,
d
dx ln x =
1
x
. [10]
a) What happens when t > 1/b? Explain.
b) Find a formula for the instantaneous velocity of the rocket.
c) Find a formula for the instantaneous acceleration.
d) Suppose that a rocket with uex = 3.0 × 103 m/s and b = 7.5 × 10−3
s
−1
takes 120
s to burn all its fuel. What is the instantaneous velocity at t = 0 s? At t = 120 s?
1
Expert's answer
2020-10-07T07:31:29-0400

As per the given question,

x(t)=uex(1bt)ln(1bt)+uextx(t)=u_{ex}\left(\dfrac{1}{b}-t\right)\ln\left(1-bt\right)+u_{ex}t

a) As per the question, if t>1bt>\frac{1}{b}

x(t)=uex(1bt)ln(1bt)+uextx(t)=u_{ex}\left(\dfrac{1}{b}-t\right)\ln\left(1-bt\right)+u_{ex}t

so tb>1 hence first term will not defined because ln is not defined for negative value.


b)

Now taking the differentiation with respect to t

x(t)dt=ddx[(uex(1bt)ln(1bt)+uext)]\frac{x(t)}{dt}=\frac{d }{dx}[(u_{ex}\left(\frac{1}{b}-t\right)\ln\left(1-bt\right)+u_{ex}t)]


\Rightarrow dv=uexddt[((1bt)ln(1bt)]+uexdv=u_{ex}\frac{d}{dt}[(\left(\frac{1}{b}-t\right)\ln\left(1-bt\right)]+u_{ex}


\Rightarrow dv=uex[ddt[(1bt)ln(1bt)+[(1bt)ddtln(1bt)]+uexdv=u_{ex}[\frac{d}{dt}[(\frac{1}{b}-t)\ln\left(1-bt\right)+[(\frac{1}{b}-t)\frac{d}{dt}\ln(1-bt)]+u_{ex}


dv=uex(ln(1bt)b(1bt)1bt)+t\Rightarrow dv= u_{ex}\left(-\ln\left(1-bt\right)-\dfrac{b\left(\frac{1}{b}-t\right)}{1-bt}\right)+t

dv=uexln(1bt)buex(1bt)1bt+u\Rightarrow dv=-u_{ex}\ln\left(1-bt\right)-\dfrac{bu_{ex}\left(\frac{1}{b}-t\right)}{1-bt}+u

dv=uln(1bt)\Rightarrow dv= -u\ln\left(1-bt\right)

c) For the instantaneous acceleration,

da=dvdtda=\frac{dv}{dt}


da=ddt(uexln(1bt))\Rightarrow da=\frac{d}{dt} \left( -u_{ex} \ln \left(1-bt\right) \right)


da=uexddt(ln(1bt))\Rightarrow da=-u_{ex}\frac{d}{dt}\left( \ln(1-bt)\right)


da=uex(11bt)ddt(1bt)\Rightarrow da=-u_{ex}(\frac{1}{1-bt})\frac{d}{dt}(1-bt)


da=buex1bt\Rightarrow da=\dfrac{bu_{ex}}{1-bt}


d) Now it is given

uex=3.0×103m/su_{ex} = 3.0 × 10^3 m/s


b=7.5×103/secb = 7.5 × 10^{−3}/sec

t=0t=0

t=120sect=120 sec

dv=uln(1bt)\Rightarrow dv= -u\ln\left(1-bt\right)

at t=0

dv=3.0×103ln(17.5×103×0)dv=3.0\times 10^3\ln(1-7.5\times 10^{-3}\times 0)

dv=3.0×103ln(1)\Rightarrow dv=3.0\times 10^3\ln(1)

dv=0\Rightarrow dv=0

Now,

at t=120

dv=3.0×103ln(17.5×103×120)dv=3.0\times 10^3\ln(1-7.5\times 10^{-3}\times 120)

dv=3.0×103ln(10.016)\Rightarrow dv=3.0\times 10^3\ln(1-0.016)

dv=0.016×3×103m/sec\Rightarrow dv=0.016\times 3\times 10^3 m/sec

dv=48m/sec\Rightarrow dv=-48m/sec


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment