As per the given question,
"x(t)=u_{ex}\\left(\\dfrac{1}{b}-t\\right)\\ln\\left(1-bt\\right)+u_{ex}t"
a) As per the question, if "t>\\frac{1}{b}"
"x(t)=u_{ex}\\left(\\dfrac{1}{b}-t\\right)\\ln\\left(1-bt\\right)+u_{ex}t"
so tb>1 hence first term will not defined because ln is not defined for negative value.
b)
Now taking the differentiation with respect to t
"\\frac{x(t)}{dt}=\\frac{d }{dx}[(u_{ex}\\left(\\frac{1}{b}-t\\right)\\ln\\left(1-bt\\right)+u_{ex}t)]"
"\\Rightarrow" "dv=u_{ex}\\frac{d}{dt}[(\\left(\\frac{1}{b}-t\\right)\\ln\\left(1-bt\\right)]+u_{ex}"
"\\Rightarrow" "dv=u_{ex}[\\frac{d}{dt}[(\\frac{1}{b}-t)\\ln\\left(1-bt\\right)+[(\\frac{1}{b}-t)\\frac{d}{dt}\\ln(1-bt)]+u_{ex}"
"\\Rightarrow dv= u_{ex}\\left(-\\ln\\left(1-bt\\right)-\\dfrac{b\\left(\\frac{1}{b}-t\\right)}{1-bt}\\right)+t"
"\\Rightarrow dv=-u_{ex}\\ln\\left(1-bt\\right)-\\dfrac{bu_{ex}\\left(\\frac{1}{b}-t\\right)}{1-bt}+u"
"\\Rightarrow dv= -u\\ln\\left(1-bt\\right)"
c) For the instantaneous acceleration,
"da=\\frac{dv}{dt}"
"\\Rightarrow da=\\frac{d}{dt} \\left( -u_{ex} \\ln \\left(1-bt\\right) \\right)"
"\\Rightarrow da=-u_{ex}\\frac{d}{dt}\\left( \\ln(1-bt)\\right)"
"\\Rightarrow da=-u_{ex}(\\frac{1}{1-bt})\\frac{d}{dt}(1-bt)"
"\\Rightarrow da=\\dfrac{bu_{ex}}{1-bt}"
d) Now it is given
"u_{ex} = 3.0 \u00d7 10^3 m\/s"
"b = 7.5 \u00d7 10^{\u22123}\/sec"
"t=0"
"t=120 sec"
"\\Rightarrow dv= -u\\ln\\left(1-bt\\right)"
at t=0
"dv=3.0\\times 10^3\\ln(1-7.5\\times 10^{-3}\\times 0)"
"\\Rightarrow dv=3.0\\times 10^3\\ln(1)"
"\\Rightarrow dv=0"
Now,
at t=120
"dv=3.0\\times 10^3\\ln(1-7.5\\times 10^{-3}\\times 120)"
"\\Rightarrow dv=3.0\\times 10^3\\ln(1-0.016)"
"\\Rightarrow dv=0.016\\times 3\\times 10^3 m\/sec"
"\\Rightarrow dv=-48m\/sec"
Comments
Leave a comment