As per the given question,
x(t)=uex(b1−t)ln(1−bt)+uext
a) As per the question, if t>b1
x(t)=uex(b1−t)ln(1−bt)+uext
so tb>1 hence first term will not defined because ln is not defined for negative value.
b)
Now taking the differentiation with respect to t
dtx(t)=dxd[(uex(b1−t)ln(1−bt)+uext)]
⇒ dv=uexdtd[((b1−t)ln(1−bt)]+uex
⇒ dv=uex[dtd[(b1−t)ln(1−bt)+[(b1−t)dtdln(1−bt)]+uex
⇒dv=uex(−ln(1−bt)−1−btb(b1−t))+t
⇒dv=−uexln(1−bt)−1−btbuex(b1−t)+u
⇒dv=−uln(1−bt)
c) For the instantaneous acceleration,
da=dtdv
⇒da=dtd(−uexln(1−bt))
⇒da=−uexdtd(ln(1−bt))
⇒da=−uex(1−bt1)dtd(1−bt)
⇒da=1−btbuex
d) Now it is given
uex=3.0×103m/s
b=7.5×10−3/sec
t=0
t=120sec
⇒dv=−uln(1−bt)
at t=0
dv=3.0×103ln(1−7.5×10−3×0)
⇒dv=3.0×103ln(1)
⇒dv=0
Now,
at t=120
dv=3.0×103ln(1−7.5×10−3×120)
⇒dv=3.0×103ln(1−0.016)
⇒dv=0.016×3×103m/sec
⇒dv=−48m/sec
Comments
Leave a comment