Solution.
"F_1=50N;"
"F_2=50N;"
"F_3=70N;"
"\\phi=30^o;"
"F-?;"
"\\overrightarrow{F}=\\overrightarrow{F_1}+\\overrightarrow{F_2}+\\overrightarrow{F_3};"
"\\overrightarrow{F_{12}}=\\overrightarrow{F_1}+\\overrightarrow{F_2};"
Since the forces F1 and F2 are perpendicular, the equivalent of these forces is found by Pythagoras' theorem.
"F_{12}=\\sqrt{F_1^2+F_2^2};"
"F_{12}=\\sqrt{(50N)^2+(50N)^2}=50\\sqrt{2}N;"
By the cosine theorem, we find the equivalent module:
"F^2=F_{12}^2+F_3^2-2F_{12}F_3cos\\theta" ;
"F^2=(50\\sqrt{2}N)^2+(70N)^2-2\\sdot50\\sqrt{2}N\\sdot70N\\sdot cos15^o="
"=339N^2;"
"F=18.4N;"
"\\dfrac{F_3}{sin\\alpha}=\\dfrac{F}{sin\\theta};\\implies sin\\alpha=\\dfrac{F_3sin\\theta}{F};"
"sin\\alpha=\\dfrac{70N\\sdot 0.2588}{18.4N}=0.9845;"
"\\alpha=80^o"
Equivalent force is directed at an angle of 55o above -x.
Answer: "F=18.4N" at an angle of 55o above -x.
Comments
Leave a comment