"R=R_0(1+aT+bT^2);"
"a=3.8\\sdot 10^{-3}(1\/^oC);"
"b=-5.6\\sdot10^{-7}(1\/^oC^2);"
"\\dfrac{R}{R_0}=1+3.8\\sdot10^{-3}(1\/^oC)\\sdot 200^oC-5.6\\sdot10^{-7}(1\/^oC^2)\\sdot(200^oC)^2="
"=1.7376;"
The temperature dependence of the resistance for most metals is close to linear for a wide range of temperatures and is described by the formula:
"R=R_0(1+\\alpha\\Delta T)" , "\\alpha-" is the temperature coefficient of electrical resistance
"\\alpha=0.003927(1\/^oC);"
"1+\\alpha\\Delta T=\\dfrac{R}{R_0}\\implies \\Delta T=\\dfrac{\\dfrac{R}{R_0}-1}{\\alpha};"
"\\Delta T=\\dfrac{1.7376-1}{0.003927}=187.8^oC;"
Answer: "\\Delta T=187.8^oC."
Comments
Leave a comment