Question #119187

a boomerang is thrown with the following displacements: 4.5-m to the east, 7.5-m 30° north of west, and 3.0-m 10° south of west. what is the resultant displacement?


1
Expert's answer
2020-06-01T14:26:55-0400

Solution.

AB=4.5m;AB=4.5m;

BC=7.5m;BC=7.5m;

CD=3m;CD=3m;

B=30o;\angle B=30^o;

DCB=10o;\angle DCB=10^o;



AC2=AB2+BC22ABBCcosB;AC^2=AB^2+BC^2-2ABBCcos\angle B;

AC2=4.52+7.5224.57.50.866=18.045;AC^2=4.5^2+7.5^2-2\sdot4.5\sdot7.5\sdot 0.866=18.045;

AC=4.25m;AC=4.25m;

ACsinB=ABsinC    sinC=ABsinBAC\dfrac{AC}{sin\angle B}=\dfrac{AB}{sin \angle C}\implies sin\angle C=\dfrac{ABsin\angle B}{AC} ;


sinC=4.50.54.25=0.529;sin\angle C=\dfrac{4.5\sdot 0.5}{4.25}=0.529;

C=32o;\angle C=32^o;

ACD=22o;\angle ACD=22^o;

AD2=AC2+CD22ACCDcosACD;AD^2=AC^2+CD^2-2ACCDcos\angle ACD;

AD2=4.252+3224.2530.9272=3.4189;AD^2=4.25^2+3^2-2\sdot4.25\sdot3\sdot0.9272=3.4189;

AD=1.85m;AD=1.85m;

ADsinACD=CDsinCAD    sinCAD=CDsinACDAD;\dfrac{AD}{sin\angle ACD}=\dfrac{CD}{sin \angle CAD}\implies sin\angle CAD=\dfrac{CDsin\angle ACD}{AD};


sinCAD=30.37461.85=0.6074;sin\angle CAD=\dfrac{3\sdot 0.3746}{1.85}=0.6074;

CAD=37o;\angle CAD=37^o;

BAD=118o37o=81o;\angle BAD=118^o-37^o=81^o;

Answer: AD=1.85m,BAD=81o;AD=1.85m, \angle BAD=81^o; ,


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS