Solution.
F1=5N;F_1=5N;F1=5N;
F2=12N;F_2=12N;F2=12N;
F3=13N;F_3=13N;F3=13N;
F1→+F2→+F3→=0;\overrightarrow{F_1}+\overrightarrow{F_2}+\overrightarrow{F_3}=0;F1+F2+F3=0;
F1→+F2→=F3→;\overrightarrow{F_1}+\overrightarrow{F_2}=\overrightarrow{F_3};F1+F2=F3;
f the forces are perpendicular, then we find the equivalent of the two forces by Pythagoras' theorem, otherwise we will use the cosine theorem.
F12→=F1→+F2→;\overrightarrow{F_{12}}=\overrightarrow{F_1}+\overrightarrow{F_2};F12=F1+F2;
First, check whether the forces are perpendicular:
F12=F12+F22;F_{12}=\sqrt{F_1^2+F_2^2};F12=F12+F22;
F12=(5N)2+(12N)2=13N;F_{12}=\sqrt{(5N)^2+(12N)^2}=13N;F12=(5N)2+(12N)2=13N;
F12=F3;F_{12}=F_3;F12=F3;
Therefore, the forces 5N and 12N form an angle of 90o;
Answer: the forces 5N and 12N form an angle of 90o.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments