The ball has two projections of speed: "v_{x}" and "v_{y}" .
At the initial moment:
"v_{0x}=v_{0}\\times \\cos(\\alpha) \\newline\nv_{0y}=v_{0}\\times \\sin(\\alpha)"
The x-projection of speed will not change in time.
The y-projection:
"v_{y}=v_{0y}+at=v_{0y}-gt"
Take "g=10" :
"v_{x}=v_{0x}=12\\times\\cos(55)\\approx6.88\\newline\nv_{y}=12\\times\\sin(55)-10\\times2.16\\approx-11.76"
So:
"v=\\sqrt{v_{x}^2+v_{y}^2}=\\sqrt{47.3344+138.2976}\\approx13.63m\/s"
Comments
Leave a comment