The ball has two projections of speed: vxv_{x}vx and vyv_{y}vy .
At the initial moment:
v0x=v0×cos(α)v0y=v0×sin(α)v_{0x}=v_{0}\times \cos(\alpha) \newline v_{0y}=v_{0}\times \sin(\alpha)v0x=v0×cos(α)v0y=v0×sin(α)
The x-projection of speed will not change in time.
The y-projection:
vy=v0y+at=v0y−gtv_{y}=v_{0y}+at=v_{0y}-gtvy=v0y+at=v0y−gt
Take g=10g=10g=10 :
vx=v0x=12×cos(55)≈6.88vy=12×sin(55)−10×2.16≈−11.76v_{x}=v_{0x}=12\times\cos(55)\approx6.88\newline v_{y}=12\times\sin(55)-10\times2.16\approx-11.76vx=v0x=12×cos(55)≈6.88vy=12×sin(55)−10×2.16≈−11.76
So:
v=vx2+vy2=47.3344+138.2976≈13.63m/sv=\sqrt{v_{x}^2+v_{y}^2}=\sqrt{47.3344+138.2976}\approx13.63m/sv=vx2+vy2=47.3344+138.2976≈13.63m/s
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments