Task:
t 0 = 3.1 s L = 26 m t_0=3.1 \mathrm{\ s} \\
L=26 \mathrm{\ m} t 0 = 3.1 s L = 26 m
Find: v 0 v_0 v 0 .
Solution:
Coordinate on the y-axis can be expressed as:
y ( t ) = ∫ ∫ a y d t d t = ∫ ∫ − g d t d t = ∫ ( v 0 y − g t ) d t = y 0 + v o y t − g t 2 2 y(t)=\int\int a_y dt dt = \int\int -g dt dt = \int(v_{0y} - gt)dt = y_0+ v_{oy}t - \cfrac{gt^2}{2} y ( t ) = ∫∫ a y d t d t = ∫∫ − g d t d t = ∫ ( v 0 y − g t ) d t = y 0 + v oy t − 2 g t 2
It is known that the initial y-coordinate y ( 0 ) = y 0 = 0 y(0)=y_0=0 y ( 0 ) = y 0 = 0 m and it will be the same at the time t 0 t_0 t 0 , so:
v 0 y t − g t 0 2 2 = 0 ⇒ v 0 y = g t 0 2 v_{0y}t-\cfrac{gt_0^2}{2}=0\Rightarrow v_{0y}=\cfrac{gt_0}{2} v 0 y t − 2 g t 0 2 = 0 ⇒ v 0 y = 2 g t 0
Coordinate on the x-axis can be expressed as:
x ( t ) = ∫ ∫ a x d t d t = ∫ v 0 x d t = x 0 + v 0 x t x(t)=\int \int a_xdtdt=\int v_{0x} dt=x_0+v_{0x}t x ( t ) = ∫∫ a x d t d t = ∫ v 0 x d t = x 0 + v 0 x t
It is known that the initial x-coordinate x ( 0 ) = x 0 = 0 x(0)=x_0=0 x ( 0 ) = x 0 = 0 and it will be equal to L L L at the time t 0 t_0 t 0 , so:
v 0 x t 0 = L ⇒ v 0 x = L t 0 v_{0x}t_0=L\Rightarrow v_{0x}=\cfrac{L}{t_0} v 0 x t 0 = L ⇒ v 0 x = t 0 L
Thus, according to the Pythagorean theorem the initial velocity v 0 v_0 v 0 is equal to:
v 0 = v 0 x 2 + v 0 y 2 = ( L t 0 ) 2 + ( g t 0 2 ) 2 = L 2 t 0 2 + g 2 t 0 2 4 = 2 6 2 3. 1 2 + 9. 8 2 3. 1 2 4 ≈ 17.35 m / s v_0=\sqrt{v_{0x}^2+v_{0y}^2}=\sqrt{(\cfrac{L}{t_0})^2+(\cfrac{gt_0}{2})^2}=\sqrt{\cfrac{L^2}{t_0^2}+\cfrac{g^2t_0^2}{4}}=\sqrt{\cfrac{26^2}{3.1^2}+\cfrac{9.8^23.1^2}{4}}\approx 17.35\mathrm{\ m/s} v 0 = v 0 x 2 + v 0 y 2 = ( t 0 L ) 2 + ( 2 g t 0 ) 2 = t 0 2 L 2 + 4 g 2 t 0 2 = 3. 1 2 2 6 2 + 4 9. 8 2 3. 1 2 ≈ 17.35 m/s
Answer: v 0 ≈ 17.35 m / s . v_0\approx17.35 \mathrm{\ m/s}. v 0 ≈ 17.35 m/s .
Comments