Question #105949
Obtain the directional derivative for a scalar field phi( X,Y,Z)= 3x^2y-y^3z^2 at the points (1,-2,-1) in the direction i+j+k
1
Expert's answer
2020-03-23T10:35:22-0400

directional derivative is

A=ϕ=ϕxi+ϕyj+ϕzk\vec{A}=\nabla\phi=\frac{∂ \phi}{∂x}i+\frac{∂ \phi}{∂y}j+\frac{∂ \phi}{∂z}k

then

ϕx=6xy=12\frac{∂ \phi}{∂x}=6xy=-12

ϕy=3x23y2z2=312=9\frac{∂ \phi}{∂y}=3x^2-3y^2z^2=3-12=-9

ϕz=2y3z=16\frac{∂ \phi}{∂z}=2y^3z=16

Answer


A=12i9j+16k\vec{A}=12i-9j+16k


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS