As per the question,
The equation of the wave "x=4.6\\cos(\\dfrac{7\u03c0t}{6} + \u03c0\/8)"
Now comparing this the general SHM equation, "X=A cos(\\omega t+\\phi)"
a)
"\\omega=\\dfrac{7\\pi}{6}"
"\\Rightarrow 2\\pi f=\\dfrac{7\\pi}{6}"
"\\Rightarrow f=\\dfrac{7\\pi}{6\\times2\\pi}=\\dfrac{7}{12}Hz"
b)
"x=4.6\\cos(\\dfrac{7\u03c0t}{6} + \u03c0\/8)"
"v=\\dfrac{dx}{dt}=-4.6\\times \\dfrac{7\\pi}{6}\\sin(\\dfrac{7\\pi t}{6}+\\dfrac{\\pi}{8})"
at t=0
"v=-4.6\\times \\dfrac{7\\pi}{6}\\sin(\\dfrac{\\pi}{8})=-11.91m\/sec"
"a=\\dfrac{dv}{dt}=\\dfrac{d^2x}{dt^2}=-4.6\\times \\dfrac{7\\pi}{6}\\times \\dfrac{7\\pi}{6}\\cos(\\dfrac{7\\pi t}{6}+\\dfrac{\\pi}{8})"
at t=0,
"a=-4.6\\times \\dfrac{7\\pi}{6}\\times \\dfrac{7\\pi}{6}\\sin(\\dfrac{\\pi}{8})=-\\dfrac{225.4\\pi^2}{36}\\times\\dfrac{1}{\\sqrt{2}}"
"a=-43.73m\/sec^2"
Comments
Leave a comment