Answer to Question #102594 in Mechanics | Relativity for Ojugbele Daniel

Question #102594
Show that x=Asinwt+Acoswt, satisfies the differential equation md^2x/dt^2 + kx=0
1
Expert's answer
2020-02-10T09:25:49-0500

"x=A\\sin \\omega t+A\\cos \\omega t"


"\\frac{dx}{dt}=A\\omega\\cos\\omega t-A\\omega\\sin\\omega t"

"\\frac{d^2x}{dt^2} =\\frac{d}{dt}(A\\omega\\cos\\omega t-A\\omega\\sin\\omega t)= -A\\omega^2 \\sin\\omega t-A\\omega^2\\cos\\omega t"


Substitute x into this equation: "m\\frac{d^2x}{dt^2}+kx=0"

"m( -A\\omega^2 \\sin\\omega t-A\\omega^2\\cos\\omega t)+k( A\\sin\\omega t+A\\cos\\omega t)=0"

"A(k-m\\omega ^2)(\\sin\\omega t+\\cos \\omega t)=0" for all t


Therefore, x satisfies the differential equation "m\\frac{d^2x}{dt^2}+kx=0"

if "A=0" or "k-m\\omega ^2=0."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS