Answer to Question #102594 in Mechanics | Relativity for Ojugbele Daniel

Question #102594
Show that x=Asinwt+Acoswt, satisfies the differential equation md^2x/dt^2 + kx=0
1
Expert's answer
2020-02-10T09:25:49-0500

x=Asinωt+Acosωtx=A\sin \omega t+A\cos \omega t


dxdt=AωcosωtAωsinωt\frac{dx}{dt}=A\omega\cos\omega t-A\omega\sin\omega t

d2xdt2=ddt(AωcosωtAωsinωt)=Aω2sinωtAω2cosωt\frac{d^2x}{dt^2} =\frac{d}{dt}(A\omega\cos\omega t-A\omega\sin\omega t)= -A\omega^2 \sin\omega t-A\omega^2\cos\omega t


Substitute x into this equation: md2xdt2+kx=0m\frac{d^2x}{dt^2}+kx=0

m(Aω2sinωtAω2cosωt)+k(Asinωt+Acosωt)=0m( -A\omega^2 \sin\omega t-A\omega^2\cos\omega t)+k( A\sin\omega t+A\cos\omega t)=0

A(kmω2)(sinωt+cosωt)=0A(k-m\omega ^2)(\sin\omega t+\cos \omega t)=0 for all t


Therefore, x satisfies the differential equation md2xdt2+kx=0m\frac{d^2x}{dt^2}+kx=0

if A=0A=0 or kmω2=0.k-m\omega ^2=0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment