x=Asinωt+Acosωt
dtdx=Aωcosωt−Aωsinωt
dt2d2x=dtd(Aωcosωt−Aωsinωt)=−Aω2sinωt−Aω2cosωt
Substitute x into this equation: mdt2d2x+kx=0
m(−Aω2sinωt−Aω2cosωt)+k(Asinωt+Acosωt)=0
A(k−mω2)(sinωt+cosωt)=0 for all t
Therefore, x satisfies the differential equation mdt2d2x+kx=0
if A=0 or k−mω2=0.
Comments
Leave a comment