Lets find electric field of cylindrical conductor:
"\\lambda" - charge per unit length
From Gauss Law, electric flux over coaxial cylindrical surface with length L and radius a < r < b:
"\\Phi = E2\\pi r L = \\frac{L\\lambda}{\\varepsilon_0}" Therefore,
"E = \\frac{\\lambda}{2\\pi\\varepsilon_0 r}"
Voltage difference between two conducting cylinders:
"V=\\int_a^b E(r)dr=\\int_a^b\\frac{\\lambda dr}{2\\pi\\varepsilon_0 r} = \\frac{\\lambda}{2\\pi\\varepsilon_0} \\log{\\frac{b}{a}}" By definition, capacitance per unit length is
"C = \\frac{\\lambda}{V} = \\frac{2\\pi\\varepsilon_0}{\\log{\\frac{b}{a}}}"
Comments
Leave a comment