Question #87257
Using Maxwell’s equations in free space, derive the wave equation for the z-component of
the electric field vector.
1
Expert's answer
2019-04-02T10:48:52-0400

In free space we have the following relation between the vectors (in Gaussian system of units):


D=EB=H\vec{D}=\vec{E}\\ \vec{B}=\vec{H}

Hence, the Maxwell's equations transform to the form as follows:


E=ρ×E=1cHtH=0×H=1cEt+4πcj\nabla \cdot \vec{E} = \rho\\ \nabla \times \vec{E} = - \frac{1}{c} \frac{\partial \vec{H}} {\partial t}\\ \nabla \cdot \vec{H} = 0\\ \nabla \times \vec{H} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} + \frac{4 \pi}{c} \vec{j}

Calculating the curl from both the left and right side of the 2nd equation we derive:


×(×E)=(E)ΔE=ρΔE×(1cHt)=1ct(1cEt+4πcj)=1c22Et24πc2jtΔE1c22Et2=ρ+4πc2jt\nabla \times (\nabla \times \vec{E}) = \nabla(\nabla \cdot \vec{E}) - \Delta \vec{E} = \nabla \rho - \Delta \vec{E} \\ \nabla \times \left( - \frac{1}{c} \frac{\partial \vec{H}}{\partial t} \right) = - \frac{1}{c} \frac{\partial}{\partial t} \left( \frac{1}{c} \frac{\partial \vec{E}}{\partial t} + \frac{4 \pi}{c} \vec{j} \right) = - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} - \frac{4 \pi}{c^2} \frac{\partial \vec{j}}{\partial t}\\ \Rightarrow \, \Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \nabla \rho + \frac{4 \pi}{c^2} \frac{\partial \vec{j}}{\partial t}

Finally, projecting this vector equation on the z-axis, we obtain:


ΔEz1c22Ezt2=ρz+4πc2jzt\Delta E_z - \frac{1}{c^2} \frac{\partial^2 E_z}{\partial t^2} = \frac{\partial \rho}{\partial z} + \frac{4 \pi}{c^2} \frac{\partial j_z}{\partial t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS