In free space we have the following relation between the vectors (in Gaussian system of units):
D ⃗ = E ⃗ B ⃗ = H ⃗ \vec{D}=\vec{E}\\
\vec{B}=\vec{H} D = E B = H Hence, the Maxwell's equations transform to the form as follows:
∇ ⋅ E ⃗ = ρ ∇ × E ⃗ = − 1 c ∂ H ⃗ ∂ t ∇ ⋅ H ⃗ = 0 ∇ × H ⃗ = 1 c ∂ E ⃗ ∂ t + 4 π c j ⃗ \nabla \cdot \vec{E} = \rho\\
\nabla \times \vec{E} = - \frac{1}{c} \frac{\partial \vec{H}}
{\partial t}\\
\nabla \cdot \vec{H} = 0\\
\nabla \times \vec{H} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} + \frac{4 \pi}{c} \vec{j} ∇ ⋅ E = ρ ∇ × E = − c 1 ∂ t ∂ H ∇ ⋅ H = 0 ∇ × H = c 1 ∂ t ∂ E + c 4 π j Calculating the curl from both the left and right side of the 2nd equation we derive:
∇ × ( ∇ × E ⃗ ) = ∇ ( ∇ ⋅ E ⃗ ) − Δ E ⃗ = ∇ ρ − Δ E ⃗ ∇ × ( − 1 c ∂ H ⃗ ∂ t ) = − 1 c ∂ ∂ t ( 1 c ∂ E ⃗ ∂ t + 4 π c j ⃗ ) = − 1 c 2 ∂ 2 E ⃗ ∂ t 2 − 4 π c 2 ∂ j ⃗ ∂ t ⇒ Δ E ⃗ − 1 c 2 ∂ 2 E ⃗ ∂ t 2 = ∇ ρ + 4 π c 2 ∂ j ⃗ ∂ t \nabla \times (\nabla \times \vec{E}) = \nabla(\nabla \cdot \vec{E}) - \Delta \vec{E} = \nabla \rho - \Delta \vec{E} \\
\nabla \times \left( - \frac{1}{c} \frac{\partial \vec{H}}{\partial t} \right) = - \frac{1}{c} \frac{\partial}{\partial t} \left( \frac{1}{c} \frac{\partial \vec{E}}{\partial t}
+ \frac{4 \pi}{c} \vec{j} \right) = - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} - \frac{4 \pi}{c^2} \frac{\partial \vec{j}}{\partial t}\\
\Rightarrow \, \Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \nabla \rho + \frac{4 \pi}{c^2} \frac{\partial \vec{j}}{\partial t} ∇ × ( ∇ × E ) = ∇ ( ∇ ⋅ E ) − Δ E = ∇ ρ − Δ E ∇ × ( − c 1 ∂ t ∂ H ) = − c 1 ∂ t ∂ ( c 1 ∂ t ∂ E + c 4 π j ) = − c 2 1 ∂ t 2 ∂ 2 E − c 2 4 π ∂ t ∂ j ⇒ Δ E − c 2 1 ∂ t 2 ∂ 2 E = ∇ ρ + c 2 4 π ∂ t ∂ j Finally, projecting this vector equation on the z-axis, we obtain:
Δ E z − 1 c 2 ∂ 2 E z ∂ t 2 = ∂ ρ ∂ z + 4 π c 2 ∂ j z ∂ t \Delta E_z - \frac{1}{c^2} \frac{\partial^2 E_z}{\partial t^2} = \frac{\partial \rho}{\partial z} + \frac{4 \pi}{c^2} \frac{\partial j_z}{\partial t} Δ E z − c 2 1 ∂ t 2 ∂ 2 E z = ∂ z ∂ ρ + c 2 4 π ∂ t ∂ j z
Comments