Let us consider the Maxwell's equations in free space (in Gauss units)
"\\nabla \\cdot \\vec{E} = \\rho\\\\\n\\nabla \\cdot \\vec{H} = 0\\\\\n\\nabla \\times \\vec{E} = - \\frac{1}{c} \\frac{\\partial \\vec{H}}{\\partial t}\\\\\n\\nabla \\times \\vec{H} = \\frac{1}{c} \\frac{\\partial \\vec{E}}{\\partial t}\t+ \\frac{4 \\pi}{c} \\vec{j}" After calculating the curl from the left side of the third equation, we obtain:
"\\nabla \\times (\\nabla \\times \\vec{E}) = \\nabla(\\nabla \\cdot \\vec{E}) - \\Delta \\vec{E} = \\nabla \\rho - \\Delta \\vec{E}" Performing this procedure over the right side of the same equation and taking into account that partial derivative over time commutes with nable operator, we obtain:
"\\nabla \\times \\left( - \\frac{1}{c} \\frac{\\partial \\vec{H}}{\\partial t} \\right) = - \\frac{1}{c} \\frac{\\partial}{\\partial t} \\left( \\frac{1}{c} \\frac{\\partial \\vec{E}}{\\partial t}\t\n \t+ \\frac{4 \\pi}{c} \\vec{j} \\right) = - \\frac{1}{c^2} \\frac{\\partial^2 \\vec{E}}{\\partial t^2} - \\frac{4 \\pi}{c^2} \\frac{\\partial \\vec{j}}{\\partial t}" Finally, putting the expressions together, we deduce:
"\\Delta \\vec{E} - \\frac{1}{c^2} \\frac{\\partial^2 \\vec{E}}{\\partial t^2} = \\nabla \\rho + \\frac{4 \\pi}{c^2} \\frac{\\partial \\vec{j}}{\\partial t}" In order to get the equation for z-component, one should project this expression onto the z-axis:
"\\Delta E_z - \\frac{1}{c^2} \\frac{\\partial^2 E_z}{\\partial t^2} = \\frac{\\partial \\rho}{\\partial z} + \\frac{4 \\pi}{c^2} \\frac{\\partial j_z}{\\partial t}"
Comments
Leave a comment