The Maxwell's equations in free space can be written as follows:
∇ × E ⃗ = − 1 c ∂ H ⃗ ∂ t , ( 1 ) ∇ × H ⃗ = 1 c ∂ E ⃗ ∂ t + 4 π c j ⃗ , ( 2 ) ∇ ⋅ E ⃗ = ρ , ( 3 ) ∇ ⋅ H ⃗ = 0. ( 4 ) \nabla \times \vec{E} = - \frac{1}{c} \frac{\partial \vec{H}}{\partial t}, \quad (1) \\
\nabla \times \vec{H} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} + \frac{4 \pi}{c} \vec{j}, \quad (2)\\
\nabla \cdot \vec{E} = \rho, \quad (3) \quad\quad \nabla \cdot \vec{H} = 0. \quad (4) ∇ × E = − c 1 ∂ t ∂ H , ( 1 ) ∇ × H = c 1 ∂ t ∂ E + c 4 π j , ( 2 ) ∇ ⋅ E = ρ , ( 3 ) ∇ ⋅ H = 0. ( 4 ) Taking the curl operation from the first equation, we obtain:
∇ × ( ∇ × E ⃗ ) = ∇ × ( − 1 c ∂ H ⃗ ∂ t ) \nabla \times (\nabla \times \vec{E}) = \nabla \times \left( - \frac{1}{c} \frac{\partial \vec{H}}{\partial t} \right) ∇ × ( ∇ × E ) = ∇ × ( − c 1 ∂ t ∂ H ) This expression can be simplified as follows:
∇ ( ∇ ⋅ E ⃗ ) − Δ E ⃗ = − 1 c ∂ ∂ t ( ∇ × H ⃗ ) \nabla(\nabla \cdot \vec{E}) - \Delta \vec{E} = - \frac{1}{c} \frac{\partial }{\partial t} \left( \nabla \times \vec{H} \right) ∇ ( ∇ ⋅ E ) − Δ E = − c 1 ∂ t ∂ ( ∇ × H ) After substitution of the corresponding expressions from the 2nd and 3rd Maxwell's equations, we derive:
∇ ρ − Δ E ⃗ = − 1 c 2 ∂ 2 E ⃗ ∂ t 2 − 4 π c 2 ∂ j ⃗ ∂ t \nabla \rho - \Delta \vec{E} = - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} - \frac{4 \pi}{c^2} \frac{\partial \vec{j}}{\partial t} ∇ ρ − Δ E = − c 2 1 ∂ t 2 ∂ 2 E − c 2 4 π ∂ t ∂ j This expression can be re-written in the following way:
Δ E ⃗ − 1 c 2 ∂ 2 E ⃗ ∂ t 2 = ∇ ρ + 4 π c 2 ∂ j ⃗ ∂ t \Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \nabla \rho + \frac{4 \pi}{c^2} \frac{\partial \vec{j}}{\partial t} Δ E − c 2 1 ∂ t 2 ∂ 2 E = ∇ ρ + c 2 4 π ∂ t ∂ j In order to derive the expression for the z-component of the electric field vector, one should project this expression onto the z-axis:
Δ E z − 1 c 2 ∂ 2 E z ∂ t 2 = ∂ ρ ∂ z + 4 π c 2 ∂ j z ∂ t , \Delta E_z - \frac{1}{c^2} \frac{\partial^2 E_z}{\partial t^2} = \frac{\partial \rho}{\partial z} + \frac{4 \pi}{c^2} \frac{\partial j_z}{\partial t}, Δ E z − c 2 1 ∂ t 2 ∂ 2 E z = ∂ z ∂ ρ + c 2 4 π ∂ t ∂ j z , which is the answer on the question.
Comments