The Maxwell's equations in free space can be written as follows:
"\\nabla \\times \\vec{E} = - \\frac{1}{c} \\frac{\\partial \\vec{H}}{\\partial t}, \\quad (1) \\\\\n\\nabla \\times \\vec{H} = \\frac{1}{c} \\frac{\\partial \\vec{E}}{\\partial t}\t+ \\frac{4 \\pi}{c} \\vec{j}, \\quad (2)\\\\\n\\nabla \\cdot \\vec{E} = \\rho, \\quad (3) \\quad\\quad \\nabla \\cdot \\vec{H} = 0. \\quad (4)" Taking the curl operation from the first equation, we obtain:
"\\nabla \\times (\\nabla \\times \\vec{E}) = \\nabla \\times \\left( - \\frac{1}{c} \\frac{\\partial \\vec{H}}{\\partial t} \\right)" This expression can be simplified as follows:
"\\nabla(\\nabla \\cdot \\vec{E}) - \\Delta \\vec{E} = - \\frac{1}{c} \\frac{\\partial }{\\partial t} \\left( \\nabla \\times \\vec{H} \\right)" After substitution of the corresponding expressions from the 2nd and 3rd Maxwell's equations, we derive:
"\\nabla \\rho - \\Delta \\vec{E} = - \\frac{1}{c^2} \\frac{\\partial^2 \\vec{E}}{\\partial t^2} - \\frac{4 \\pi}{c^2} \\frac{\\partial \\vec{j}}{\\partial t}" This expression can be re-written in the following way:
"\\Delta \\vec{E} - \\frac{1}{c^2} \\frac{\\partial^2 \\vec{E}}{\\partial t^2} = \\nabla \\rho + \\frac{4 \\pi}{c^2} \\frac{\\partial \\vec{j}}{\\partial t}" In order to derive the expression for the z-component of the electric field vector, one should project this expression onto the z-axis:
"\\Delta E_z - \\frac{1}{c^2} \\frac{\\partial^2 E_z}{\\partial t^2} = \\frac{\\partial \\rho}{\\partial z} + \\frac{4 \\pi}{c^2} \\frac{\\partial j_z}{\\partial t}," which is the answer on the question.
Comments
Leave a comment