Capacitor capacity until full
"C=\\frac{\\epsilon_0 \\cdot S}{d}"
Capacitor capacity after filling
"C^{'}=\\frac{C_1 \\cdot C_2 }{C_1 + C_2}"
Where
"C_1=\\frac{\\epsilon\\cdot \\epsilon_0 \\cdot S}{\\frac{1}{4} \\cdot d}=\\epsilon\\cdot \\frac{4\\cdot \\epsilon_0 \\cdot S}{ d}=4 \\cdot \\epsilon \\cdot C"
"C_2=\\frac{ \\epsilon_0 \\cdot S}{\\frac{3}{4} \\cdot d}=\\frac{4\\cdot \\epsilon_0 \\cdot S}{3 \\cdot d}=\\frac{4}{3} \\cdot C"
Then write
"C^{'}=\\frac{C_1 \\cdot C_2 }{C_1 + C_2}=\\frac{4 \\cdot \\epsilon \\cdot C \\cdot \\frac{4}{3} \\cdot C}{4 \\cdot \\epsilon \\cdot C + \\frac{4}{3} \\cdot C}=\\frac{4 \\cdot \\epsilon \\cdot \\frac{4}{3} \\cdot C}{4 \\cdot \\epsilon + \\frac{4}{3} }=\\frac{16 \\cdot \\epsilon }{12 \\cdot \\epsilon + 4 } \\cdot C=k \\cdot C"
Then the desired coefficient is
"k=\\frac{16 \\cdot \\epsilon }{12 \\cdot \\epsilon + 4 }=\\frac{16 \\cdot 2.5 }{12 \\cdot 2.5 + 4 }=\\frac{40 }{34}=1.176"
Capacitor capacity will increase 1.176 times
Comments
Leave a comment