Question #105695
A dielctric of dielectric constant 2.5 is filled in the gap between the plates of a capacitor. Calculate the factor by which the capacitance is increased, if the dielectric is only sufficient to fill up one fourth of the gap
1
Expert's answer
2020-03-17T09:22:09-0400


Capacitor capacity until full

C=ϵ0SdC=\frac{\epsilon_0 \cdot S}{d}

Capacitor capacity after filling

C=C1C2C1+C2C^{'}=\frac{C_1 \cdot C_2 }{C_1 + C_2}

Where

C1=ϵϵ0S14d=ϵ4ϵ0Sd=4ϵCC_1=\frac{\epsilon\cdot \epsilon_0 \cdot S}{\frac{1}{4} \cdot d}=\epsilon\cdot \frac{4\cdot \epsilon_0 \cdot S}{ d}=4 \cdot \epsilon \cdot C

C2=ϵ0S34d=4ϵ0S3d=43CC_2=\frac{ \epsilon_0 \cdot S}{\frac{3}{4} \cdot d}=\frac{4\cdot \epsilon_0 \cdot S}{3 \cdot d}=\frac{4}{3} \cdot C

Then write

C=C1C2C1+C2=4ϵC43C4ϵC+43C=4ϵ43C4ϵ+43=16ϵ12ϵ+4C=kCC^{'}=\frac{C_1 \cdot C_2 }{C_1 + C_2}=\frac{4 \cdot \epsilon \cdot C \cdot \frac{4}{3} \cdot C}{4 \cdot \epsilon \cdot C + \frac{4}{3} \cdot C}=\frac{4 \cdot \epsilon \cdot \frac{4}{3} \cdot C}{4 \cdot \epsilon + \frac{4}{3} }=\frac{16 \cdot \epsilon }{12 \cdot \epsilon + 4 } \cdot C=k \cdot C

Then the desired coefficient is

k=16ϵ12ϵ+4=162.5122.5+4=4034=1.176k=\frac{16 \cdot \epsilon }{12 \cdot \epsilon + 4 }=\frac{16 \cdot 2.5 }{12 \cdot 2.5 + 4 }=\frac{40 }{34}=1.176

Capacitor capacity will increase 1.176 times


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS