Question #105607
Assume that the vector field A= 5xyax + xy2ay + 4zaz is defined in a region 1≤ x ≤ 3, −2 ≤ y ≤ 4 and −1≤ z ≤ 2. Find the value of the closed-surface integral ∫∫ A.ds over the surface of this region.
1
Expert's answer
2020-03-17T10:02:38-0400

The vector field is


A=5xyx+xy2y+4zz.\textbf{A}= 5xy\textbf{x} + xy^2\textbf{y} + 4z\textbf{z}.

The value of the closed-surface integral AdS\int\int AdS over the surface of this region can be found with Gauss's theorem:


Φ=A dS= divA dV,  divA=Axx+Ayy+Azz= =5xyx+xy2y+4zz= =5y+2xy+4.  divA dV=(5y+2xy+4)dxdydz= =12[24(13(5y+2xy+4)dx)dy]dz= =12[24((5xy+x2y+4x)13)dy]dz= =12[24(18y+8)dy]dz= =12[(y2+8y)24]dz= =1260 dz=60z12=180.\Phi=\iint\textbf{A}\text{ d}S=\iiint\text{ div}\textbf{A}\text{ d}V,\\ \space\\ \text{ div}\textbf{A}=\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}+\frac{\partial A_z}{\partial z}=\\ \space\\ =\frac{\partial 5xy}{\partial x}+\frac{\partial xy^2}{\partial y}+\frac{\partial 4z}{\partial z}=\\ \space\\ =5y+2xy+4.\\ \space\\ \iiint\text{ div}\textbf{A}\text{ d}V=\iiint(5y+2xy+4)\text{d}x\text{d}y\text{d}z=\\ \space\\ =\int_{-1}^2\Bigg[\int_{-2}^4\Bigg(\int^3_1(5y+2xy+4)\text{d}x\Bigg)\text{d}y\Bigg]\text{d}z=\\ \space\\ =\int_{-1}^2\Bigg[\int_{-2}^4\Bigg((5xy+x^2y+4x)\bigg|^3_1\Bigg)\text{d}y\Bigg]\text{d}z=\\ \space\\ =\int_{-1}^2\Bigg[\int_{-2}^4(18y+8)\text{d}y\Bigg]\text{d}z=\\ \space\\ =\int_{-1}^2\Bigg[(y^2+8y)\bigg|^4_{-2}\Bigg]\text{d}z=\\ \space\\ =\int_{-1}^260\text{ d}z=60z\bigg|^2_{-1}=180.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS