Question #105448
[img]https://upload.cc/i1/2020/03/13/Iepuz2.jpg[/img]




R is 4
1
Expert's answer
2020-03-16T13:11:37-0400

As per the given question,

Radius of the inner sphere a=4.5cm=4.5×102ma=4.5 cm=4.5\times 10^{-2}m

Surface charge density on the sphere (ρa)=78.6fc/m2(\rho_a)= 78.6fc/m^2

Shell B is made of non conducting material,

inner radius of B (b)=6.5cm=6.5×102m(b)=6.5 cm =6.5\times 10^{-2}m

outer radius of B, (c)=(R+70)mm(c)=(R+70)mm

a)

As A is conducting sphere, so all the charges given to the sphere A will come to the surface of the sphere A,

Hence total charge =4πa2×ρa=78.6×1015×4π×(4.5×102)2=19.99×10162fC=4\pi a^2\times \rho_a=78.6\times 10^{-15}\times4\pi\times (4.5\times 10^{-2})^2=19.99\times 10^{-16}\simeq2 fC

b) electric field at a distance r=5 cm

E=q4πϵoR2E=\dfrac{q}{4\pi \epsilon_o R^2}

E=2×1015×109×95×5×104=0.72×102=7.2×103N/CE=\dfrac{2\times 10^{-15}\times 10^9\times 9}{5\times 5\times 10^{-4}}=0.72\times 10^{-2}=7.2\times 10^{-3}N/C

C)Charges will induce on the surface of the shell B, in the inner surface of the shell B, charges will be -negative due to the the induction and other of the shell B, will be positively charged.

So, net field in the shell B will be zero.

charge on the inner surface =-3fC-3fC

Charge on the outer surface of the sphere = 3fc

2×10154π×ϵo×(a+x)2+2×10154πϵo(cx)2\dfrac{-2\times 10^{-15}}{4\pi\times \epsilon_o\times (a+x)^2}+\dfrac{2\times10^{-15}}{4\pi\epsilon_o(c-x)^2}

everything will get cancel, only x terms will remain in the above equation,

x=ca2=8.84.52=4.32=2.15cmx=\dfrac{c-a}{2}=\dfrac{8.8-4.5}{2}=\dfrac{4.3}{2}=2.15cm

d) Qnet=25+3=0Q_{net}=2-5+3=0

So, from the gaussian rule,

E=Qnetϵo=0ϵo=0E=\dfrac{Q_{net}}{\epsilon_o}=\dfrac{0}{\epsilon_o}=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS