For a vector field
"\\textbf{F}=P\\textbf{i}+Q\\textbf{j}+R\\textbf{k}=x\\textbf{i}+y\\textbf{j}+z\\textbf{k},"
the flux through the 3-dimensional surface element "S" is
"\\Phi=\\iint\\textbf{F}\\text{ d}S=\\iiint\\text{ div}\\textbf{F}\\text{ d}V,\\\\\n\\space\\\\\n\\text{ div}\\textbf{F}=\\frac{\\partial F_x}{\\partial x}+\\frac{\\partial F_y}{\\partial y}+\\frac{\\partial F_z}{\\partial z}=\\\\\n\\space\\\\\n=\\frac{\\partial x}{\\partial x}+\\frac{\\partial y}{\\partial y}+\\frac{\\partial z}{\\partial z}=\\\\\n\\space\\\\\n=1+1+1=3.\\\\\n\\space\\\\\n\\iiint\\text{ div}\\textbf{F}\\text{ d}V=\\iiint3\\text{d}V=3V=3\\pi A^2H."
Comments
Leave a comment