(a) The own energy of the shells
W1=2q1ϕ1=4πϵ01⋅2R1q12=
=4⋅3.14⋅8.85⋅10−121⋅2⋅0.15(200⋅10−12)2≈12⋅10−10J
W2=2q2ϕ2=4πϵ01⋅2R2q22=
=4⋅3.14⋅8.85⋅10−121⋅2⋅0.24(100⋅10−12)2≈2⋅10−10J
W3=2q3ϕ3=4πϵ01⋅2R3q32=
=4⋅3.14⋅8.85⋅10−121⋅2⋅0.4(−450⋅10−12)2≈23⋅10−10J
The interaction energy of shells (the electric potential energy)
Wi=W12+W13+W23=4πϵ01(q1aq2+q3+q2aq1+q3+q3aq1+q2)=
=4⋅3.14⋅8.85⋅10−121(200⋅10−123100⋅10−12−450⋅10−12+
+100⋅10−123200⋅10−12−450⋅10−12−450⋅10−123200⋅10−12+100⋅10−12)=
=−8⋅10−10J
The total energy of the shells
Wtotal=W1+W2+W3+W12+W23+W13=29⋅10−10J
(b)
ϕx=4πϵ01⋅R2q2=4⋅3.14⋅8.85⋅10−121⋅0.24100⋅10−12=3.75V
ϕy=4πϵ01⋅R3q3=4⋅3.14⋅8.85⋅10−121⋅0.4−450⋅10−12=−10.12V
Uxy=ϕx−ϕy=3.75−(−10.12)=13.87V.
Comments