(a) The own energy of the shells
"W_1=\\frac{q_1\\phi_1}{2}=\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{q_1^2}{2R_1}="
"=\\frac{1}{4\\cdot 3.14\\cdot 8.85\\cdot10^{-12}}\\cdot\\frac{(200\\cdot10^{-12})^2}{2\\cdot 0.15}\\approx12\\cdot10^{-10}J"
"W_2=\\frac{q_2\\phi_2}{2}=\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{q_2^2}{2R_2}="
"=\\frac{1}{4\\cdot 3.14\\cdot 8.85\\cdot10^{-12}}\\cdot\\frac{(100\\cdot10^{-12})^2}{2\\cdot 0.24}\\approx2\\cdot10^{-10}J"
"W_3=\\frac{q_3\\phi_3}{2}=\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{q_3^2}{2R_3}="
"=\\frac{1}{4\\cdot 3.14\\cdot 8.85\\cdot10^{-12}}\\cdot\\frac{(-450\\cdot10^{-12})^2}{2\\cdot 0.4}\\approx23\\cdot10^{-10}J"
The interaction energy of shells (the electric potential energy)
"W_i=W_{12}+W_{13}+W_{23}=\\frac{1}{4\\pi\\epsilon_0}(q_1\\frac{q_2+q_3}{a}+q_2\\frac{q_1+q_3}{a}+q_3\\frac{q_1+q_2}{a})="
"=\\frac{1}{4\\cdot 3.14\\cdot 8.85\\cdot10^{-12}}(200\\cdot10^{-12}\\frac{100\\cdot10^{-12}-450\\cdot10^{-12}}{3}+"
"+100\\cdot10^{-12}\\frac{200\\cdot10^{-12}-450\\cdot10^{-12}}{3}-450\\cdot10^{-12}\\frac{200\\cdot10^{-12}+100\\cdot10^{-12}}{3})="
"=-8\\cdot10^{-10}J"
The total energy of the shells
"W_{total}=W_1+W_2+W_3+W_{12}+W_{23}+W_{13}=29\\cdot10^{-10}J"
(b)
"\\phi_x=\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{q_2}{R_2}=\\frac{1}{4\\cdot 3.14\\cdot 8.85\\cdot10^{-12}}\\cdot \\frac{100\\cdot10^{-12}}{0.24}=3.75 V"
"\\phi_y=\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{q_3}{R_3}=\\frac{1}{4\\cdot 3.14\\cdot 8.85\\cdot10^{-12}}\\cdot \\frac{-450\\cdot10^{-12}}{0.4}=-10.12 V"
"U_{xy}=\\phi_x-\\phi_y=3.75-(-10.12)=13.87V."
Comments
Leave a comment