Answer to Question #105551 in Electricity and Magnetism for happy456

Question #105551
[img]https://upload.cc/i1/2020/03/13/9nKEaw.jpg[/img]




R=4
1
Expert's answer
2020-03-19T11:27:03-0400

(a) The own energy of the shells


"W_1=\\frac{q_1\\phi_1}{2}=\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{q_1^2}{2R_1}="


"=\\frac{1}{4\\cdot 3.14\\cdot 8.85\\cdot10^{-12}}\\cdot\\frac{(200\\cdot10^{-12})^2}{2\\cdot 0.15}\\approx12\\cdot10^{-10}J"



"W_2=\\frac{q_2\\phi_2}{2}=\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{q_2^2}{2R_2}="


"=\\frac{1}{4\\cdot 3.14\\cdot 8.85\\cdot10^{-12}}\\cdot\\frac{(100\\cdot10^{-12})^2}{2\\cdot 0.24}\\approx2\\cdot10^{-10}J"


"W_3=\\frac{q_3\\phi_3}{2}=\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{q_3^2}{2R_3}="


"=\\frac{1}{4\\cdot 3.14\\cdot 8.85\\cdot10^{-12}}\\cdot\\frac{(-450\\cdot10^{-12})^2}{2\\cdot 0.4}\\approx23\\cdot10^{-10}J"


The interaction energy of shells (the electric potential energy)


"W_i=W_{12}+W_{13}+W_{23}=\\frac{1}{4\\pi\\epsilon_0}(q_1\\frac{q_2+q_3}{a}+q_2\\frac{q_1+q_3}{a}+q_3\\frac{q_1+q_2}{a})="


"=\\frac{1}{4\\cdot 3.14\\cdot 8.85\\cdot10^{-12}}(200\\cdot10^{-12}\\frac{100\\cdot10^{-12}-450\\cdot10^{-12}}{3}+"


"+100\\cdot10^{-12}\\frac{200\\cdot10^{-12}-450\\cdot10^{-12}}{3}-450\\cdot10^{-12}\\frac{200\\cdot10^{-12}+100\\cdot10^{-12}}{3})="


"=-8\\cdot10^{-10}J"


The total energy of the shells


"W_{total}=W_1+W_2+W_3+W_{12}+W_{23}+W_{13}=29\\cdot10^{-10}J"


(b)

"\\phi_x=\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{q_2}{R_2}=\\frac{1}{4\\cdot 3.14\\cdot 8.85\\cdot10^{-12}}\\cdot \\frac{100\\cdot10^{-12}}{0.24}=3.75 V"


"\\phi_y=\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{q_3}{R_3}=\\frac{1}{4\\cdot 3.14\\cdot 8.85\\cdot10^{-12}}\\cdot \\frac{-450\\cdot10^{-12}}{0.4}=-10.12 V"


"U_{xy}=\\phi_x-\\phi_y=3.75-(-10.12)=13.87V."



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS