As per the question,
In the tirangle ABC,
AC= AB+BC,
So, "F_{AC}=F_{AB}+F_{BC}=\\dfrac{q_1q_2}{4\\pi \\epsilon_o R^2}+\\dfrac{q_2q_3}{4\\pi \\epsilon_o R^2}=\\dfrac{9\\times 4\\times10^{-3}}{4\\times 10^{-4}}+\\dfrac{9\\times 4\\times10^{-3}}{4\\times 10^{-4}}N"
"F_{AC}=180N"
Given that AC= AB+BC=2+2=4cm
Hence 180="\\sqrt{{\\dfrac{Qq_1}{4\\pi \\epsilon r^2}}^2+{\\dfrac{Qq_1}{4\\pi \\epsilon r^2}}^2+2{\\dfrac{Qq_1}{4\\pi \\epsilon r^2}}{\\dfrac{Qq_1}{4\\pi \\epsilon r^2}}\\cos60}={\\dfrac{Qq_1}{4\\pi \\epsilon r^2}}\\sqrt{3}"
"Q=\\dfrac{180\\times 16\\times 10^{-4}}{9\\times 10^{9}\\times \\sqrt{3}\\times 2\\times 10^{-6}}=92.37\\times 10^{-6}C"
Comments
Leave a comment