The route of airplane look like one can see in figure.
OA=175 km, AB=153 km, BC=195 km
"\\vec{OA}=(OA\\cdot cos30\\degree)\\cdot \\hat {i}+(OA\\cdot sin30\\degree)\\cdot \\hat j=175km\\cdot \\frac{\\sqrt{3}}{2} \\hat i+ 175km\\cdot \\frac{1}{2} \\hat j=\\\\= 151.55km\\cdot \\hat i+87.5km \\cdot \\hat j"
"\\vec{AB}=AB\\cdot cos(90\\degree+20\\degree)\\cdot \\hat i+AB\\cdot sin(90\\degree+20\\degree)\\cdot \\hat j=\\\\=AB\\cdot cos(110\\degree)\\cdot \\hat i+AB\\cdot sin(110\\degree)\\cdot \\hat j=153km\\cdot (-0.342)\\cdot \\hat i+153km\\cdot 0.9397\\cdot \\hat j=-52.3km\\cdot \\hat i +143.8km\\cdot \\hat j"
"\\vec {BC}=-BC\\cdot \\hat i=-195km\\cdot \\hat i"
"\\vec {OC}=\\vec {OA}+\\vec {AB}+\\vec {BC}"
"\\vec {OC}=(151.55-52.3-195)km\\cdot \\hat i+(87.5+143.8)km \\cdot \\hat j=-95.8km\\cdot \\hat i+231.3km \\cdot \\hat j"
"OC=\\sqrt{(95.8km)^2+(231.3km)^2}=250km"
"\\alpha=sin^{-1}(\\frac{95.8}{250})=22.5\\degree"
Answer: City C located 250 km in a direction "22.5 \\degree" west of nord.
Comments
Leave a comment