According to the Ohm's law, the current in a wire is
"I = \\frac{V}{R}" Substituting the numerical values, we obtain:
"I = \\frac{23 \\, V}{12.2 \\cdot 10^{-3} \\, \\Omega} \\approx 1.89 \\cdot 10^3 \\, A" The current density is a current flowing through a unit cross-sectional area of a wire:
"j = \\frac{I}{S} = \\frac{4 I}{\\pi d^2}" Substituting the numerical values, we obtain:
"j = \\frac{4 \\cdot 1.89 \\cdot 10^{3}}{3.14 \\cdot 2^2 \\cdot 10^{-6}} \\approx 6.0 \\cdot 10^8 \\frac{A}{m^2}" The resistivity of a wire material is:
"R = \\rho \\frac{l}{S} \\, \\Rightarrow \\, \\rho = \\frac{R S}{l} = \\frac{R \\pi d^2}{4 l}" Substituting the numerical values, we obtain:
"\\rho = \\frac{12.2 \\cdot 10^{-3} \\cdot 3.14 \\cdot 2^2}{4 \\cdot 6} \\approx 6.3 \\cdot 10^{-3} \\, \\frac{Ohm \\cdot mm^2}{m}"
Comments
Leave a comment