1) Find first the electric force on q3 due to q1 . Coulomb's law states that the electrostatic force F13 experienced by a charge, q1 at position r1 , in the vicinity of another charge, q3 at position r3 , is equal to:
F ⃗ 13 = k q 1 q 3 ( r ⃗ 1 − r ⃗ 3 ) ∣ r ⃗ 1 − r ⃗ 3 ∣ 3 {{\vec{F}}_{13}}=k{{q}_{1}}{{q}_{3}}\frac{\left( {{{\vec{r}}}_{1}}-{{{\vec{r}}}_{3}} \right)}{{{\left| {{{\vec{r}}}_{1}}-{{{\vec{r}}}_{3}} \right|}^{3}}}\, F 13 = k q 1 q 3 ∣ r 1 − r 3 ∣ 3 ( r 1 − r 3 ) where constant k is equal to 9·109 N·m2 ·C-2 . The electrostatic force F ⃗ 31 {{\vec{F}}_{31}} F 31 experienced by q3 due to q1 , according to Newton's third law, is F ⃗ 31 = − F ⃗ 13 {{\vec{F}}_{31}}=-{{\vec{F}}_{13}} F 31 = − F 13 that is
F ⃗ 31 = k q 1 q 3 ( r ⃗ 3 − r ⃗ 1 ) ∣ r ⃗ 3 − r ⃗ 1 ∣ 3 ( 1 ) {{\vec{F}}_{31}}=k{{q}_{1}}{{q}_{3}}\frac{\left( {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{1}} \right)}{{{\left| {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{1}} \right|}^{3}}}\,\,\,\,\,\,\left( 1 \right) F 31 = k q 1 q 3 ∣ r 3 − r 1 ∣ 3 ( r 3 − r 1 ) ( 1 ) We are given
r ⃗ 1 = 0 i ⃗ + 0 j ⃗ , r ⃗ 3 = 0.3 i ⃗ + 0.4 j ⃗ {{\vec{r}}_{1}}=0\vec{i}+0\vec{j},\,\,\,\,\,{{\vec{r}}_{3}}=0.3\vec{i}+0.4\vec{j} r 1 = 0 i + 0 j , r 3 = 0.3 i + 0.4 j
Then
r ⃗ 3 − r ⃗ 1 = 0.3 i ⃗ + 0.4 j ⃗ {{\vec{r}}_{3}}-{{\vec{r}}_{1}}=0.3\vec{i}+0.4\vec{j} r 3 − r 1 = 0.3 i + 0.4 j
∣ r ⃗ 3 − r ⃗ 1 ∣ = ( 0.3 ) 2 + ( 0.4 ) 2 = 0.5 \left| {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{1}} \right|=\sqrt{{{\left( 0.3 \right)}^{2}}+{{\left( 0.4 \right)}^{2}}}=0.5 ∣ r 3 − r 1 ∣ = ( 0.3 ) 2 + ( 0.4 ) 2 = 0.5
∣ r ⃗ 3 − r ⃗ 1 ∣ 3 = 0.125 {{\left| {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{1}} \right|}^{3}}=0.125 ∣ r 3 − r 1 ∣ 3 = 0.125 Substitute the known values into (1)
F ⃗ 31 = 9 ⋅ 10 9 N ⋅ m 2 ⋅ C − 2 ⋅ 6.0 ⋅ 10 − 6 C ⋅ 12.0 ⋅ 10 − 6 C ⋅ 0.3 i ⃗ + 0.4 j ⃗ 0.125 m 2 {{{\vec{F}}}_{31}}=9\cdot {{10}^{9}}N\cdot {{m}^{2}}\cdot {{C}^{-2}}\cdot 6.0\cdot {{10}^{-6}}C \\
\cdot 12.0\cdot {{10}^{-6}}C\cdot \frac{0.3\vec{i}+0.4\vec{j}}{0.125\,{{m}^{2}}} \\ F 31 = 9 ⋅ 10 9 N ⋅ m 2 ⋅ C − 2 ⋅ 6.0 ⋅ 10 − 6 C ⋅ 12.0 ⋅ 10 − 6 C ⋅ 0.125 m 2 0.3 i + 0.4 j
F ⃗ 31 = 5.184 ⋅ ( 0.3 i ⃗ + 0.4 j ⃗ ) N = ( 1.56 i ⃗ + 2.07 j ⃗ ) N {{\vec{F}}_{31}}=5.184\cdot \,\left( 0.3\vec{i}+0.4\vec{j} \right)N=(1.56\vec{i}+2.07\vec{j})N F 31 = 5.184 ⋅ ( 0.3 i + 0.4 j ) N = ( 1.56 i + 2.07 j ) N
2) Find the electric force on q3 due to q2 . By analogy with (1), we have
F ⃗ 32 = k q 2 q 3 ( r ⃗ 3 − r ⃗ 2 ) ∣ r ⃗ 3 − r ⃗ 2 ∣ 3 ( 2 ) {{\vec{F}}_{32}}=k{{q}_{2}}{{q}_{3}}\frac{\left( {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{2}} \right)}{{{\left| {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{2}} \right|}^{3}}}\,\,\,\,\,\,\left( 2 \right) F 32 = k q 2 q 3 ∣ r 3 − r 2 ∣ 3 ( r 3 − r 2 ) ( 2 )
We are given
r ⃗ 2 = 0.3 i ⃗ + 0 j ⃗ , r ⃗ 3 = 0.3 i ⃗ + 0.4 j ⃗ {{\vec{r}}_{2}}=0.3\vec{i}+0\vec{j},\,\,\,\,\,{{\vec{r}}_{3}}=0.3\vec{i}+0.4\vec{j} r 2 = 0.3 i + 0 j , r 3 = 0.3 i + 0.4 j
Then
r ⃗ 3 − r ⃗ 2 = 0 i ⃗ + 0.4 j ⃗ {{\vec{r}}_{3}}-{{\vec{r}}_{2}}=0\vec{i}+0.4\vec{j} r 3 − r 2 = 0 i + 0.4 j
∣ r ⃗ 3 − r ⃗ 2 ∣ = 0.4 \left| {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{2}} \right|=0.4 ∣ r 3 − r 2 ∣ = 0.4
∣ r ⃗ 3 − r ⃗ 2 ∣ 3 = 0.064 {{\left| {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{2}} \right|}^{3}}=0.064 ∣ r 3 − r 2 ∣ 3 = 0.064
Substitute the known values into (2)
F ⃗ 32 = 9 ⋅ 10 9 N ⋅ m ⋅ C − 2 ⋅ 9.0 ⋅ 10 − 6 C ⋅ 12.0 ⋅ 10 − 6 C ⋅ 0 i ⃗ + 0.4 j ⃗ 0.064 m 2 {{{\vec{F}}}_{32}}=9\cdot {{10}^{9}}N\cdot m\cdot {{C}^{-2}}\cdot 9.0\cdot {{10}^{-6}}C \\
\cdot 12.0\cdot {{10}^{-6}}C\cdot \frac{0\vec{i}+0.4\vec{j}}{0.064\,{{m}^{2}}} \\ F 32 = 9 ⋅ 10 9 N ⋅ m ⋅ C − 2 ⋅ 9.0 ⋅ 10 − 6 C ⋅ 12.0 ⋅ 10 − 6 C ⋅ 0.064 m 2 0 i + 0.4 j
F ⃗ 32 = 15.188 ⋅ ( 0 i ⃗ + 0.4 j ⃗ ) N = 6.08 j ⃗ N {{\vec{F}}_{32}}=15.188\cdot \,\left( 0\vec{i}+0.4\vec{j} \right)N=6.08\vec{j}N F 32 = 15.188 ⋅ ( 0 i + 0.4 j ) N = 6.08 j N
3) Now we find the net force on q3 applying the superposition principle
F ⃗ 3 = F ⃗ 31 + F ⃗ 32 = ( 1.56 i ⃗ + 2.07 j ⃗ + 6.08 j ⃗ ) N {{\vec{F}}_{3}}={{\vec{F}}_{31}}+{{\vec{F}}_{32}}=(1.56\vec{i}+2.07\vec{j}+6.08\vec{j})N F 3 = F 31 + F 32 = ( 1.56 i + 2.07 j + 6.08 j ) N
= ( 1.56 i ⃗ + 8.15 j ⃗ ) N =(1.56\vec{i}+8.15\vec{j})N = ( 1.56 i + 8.15 j ) N
Comments