1) Find first the electric force on q3 due to q1. Coulomb's law states that the electrostatic force F13 experienced by a charge, q1 at position r1, in the vicinity of another charge, q3 at position r3, is equal to:
where constant k is equal to 9·109 N·m2·C-2. The electrostatic force "{{\\vec{F}}_{31}}" experienced by q3 due to q1, according to Newton's third law, is "{{\\vec{F}}_{31}}=-{{\\vec{F}}_{13}}" that is
We are given
Then
"\\left| {{{\\vec{r}}}_{3}}-{{{\\vec{r}}}_{1}} \\right|=\\sqrt{{{\\left( 0.3 \\right)}^{2}}+{{\\left( 0.4 \\right)}^{2}}}=0.5"
Substitute the known values into (1)
"{{\\vec{F}}_{31}}=5.184\\cdot \\,\\left( 0.3\\vec{i}+0.4\\vec{j} \\right)N=(1.56\\vec{i}+2.07\\vec{j})N"
2) Find the electric force on q3 due to q2. By analogy with (1), we have
We are given
Then
"\\left| {{{\\vec{r}}}_{3}}-{{{\\vec{r}}}_{2}} \\right|=0.4"
"{{\\left| {{{\\vec{r}}}_{3}}-{{{\\vec{r}}}_{2}} \\right|}^{3}}=0.064"
Substitute the known values into (2)
"{{{\\vec{F}}}_{32}}=9\\cdot {{10}^{9}}N\\cdot m\\cdot {{C}^{-2}}\\cdot 9.0\\cdot {{10}^{-6}}C \\\\\n\n \\cdot 12.0\\cdot {{10}^{-6}}C\\cdot \\frac{0\\vec{i}+0.4\\vec{j}}{0.064\\,{{m}^{2}}} \\\\"
"{{\\vec{F}}_{32}}=15.188\\cdot \\,\\left( 0\\vec{i}+0.4\\vec{j} \\right)N=6.08\\vec{j}N"
3) Now we find the net force on q3 applying the superposition principle
"{{\\vec{F}}_{3}}={{\\vec{F}}_{31}}+{{\\vec{F}}_{32}}=(1.56\\vec{i}+2.07\\vec{j}+6.08\\vec{j})N""=(1.56\\vec{i}+8.15\\vec{j})N"
Comments
Leave a comment