Question #91876
Three charges q1 = + 6.0 µC, q2 = + 9.0 µC and q3 = + 12.0 µC are located at (0, 0) m, (0.3, 0) m and (0.3, 0.4) m respectively. Find the electric force on q3 due to q1, q3 due to q2, find the net force on q3. Show results in unit vector notation.?
1
Expert's answer
2019-07-23T15:55:21-0400

1) Find first the electric force on q3 due to q1. Coulomb's law states that the electrostatic force F13 experienced by a charge, q1 at position r1, in the vicinity of another charge, q3 at position r3, is equal to:


F13=kq1q3(r1r3)r1r33{{\vec{F}}_{13}}=k{{q}_{1}}{{q}_{3}}\frac{\left( {{{\vec{r}}}_{1}}-{{{\vec{r}}}_{3}} \right)}{{{\left| {{{\vec{r}}}_{1}}-{{{\vec{r}}}_{3}} \right|}^{3}}}\,

where constant k is equal to 9·109 N·m2·C-2. The electrostatic force F31{{\vec{F}}_{31}}  experienced by q3 due to q1, according to Newton's third law, is F31=F13{{\vec{F}}_{31}}=-{{\vec{F}}_{13}} that is


F31=kq1q3(r3r1)r3r13(1){{\vec{F}}_{31}}=k{{q}_{1}}{{q}_{3}}\frac{\left( {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{1}} \right)}{{{\left| {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{1}} \right|}^{3}}}\,\,\,\,\,\,\left( 1 \right)

We are given


r1=0i+0j,r3=0.3i+0.4j{{\vec{r}}_{1}}=0\vec{i}+0\vec{j},\,\,\,\,\,{{\vec{r}}_{3}}=0.3\vec{i}+0.4\vec{j}


Then


r3r1=0.3i+0.4j{{\vec{r}}_{3}}-{{\vec{r}}_{1}}=0.3\vec{i}+0.4\vec{j}

r3r1=(0.3)2+(0.4)2=0.5\left| {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{1}} \right|=\sqrt{{{\left( 0.3 \right)}^{2}}+{{\left( 0.4 \right)}^{2}}}=0.5


r3r13=0.125{{\left| {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{1}} \right|}^{3}}=0.125

Substitute the known values into (1)


F31=9109Nm2C26.0106C12.0106C0.3i+0.4j0.125m2{{{\vec{F}}}_{31}}=9\cdot {{10}^{9}}N\cdot {{m}^{2}}\cdot {{C}^{-2}}\cdot 6.0\cdot {{10}^{-6}}C \\ \cdot 12.0\cdot {{10}^{-6}}C\cdot \frac{0.3\vec{i}+0.4\vec{j}}{0.125\,{{m}^{2}}} \\

F31=5.184(0.3i+0.4j)N=(1.56i+2.07j)N{{\vec{F}}_{31}}=5.184\cdot \,\left( 0.3\vec{i}+0.4\vec{j} \right)N=(1.56\vec{i}+2.07\vec{j})N

2) Find the electric force on q3 due to q2. By analogy with (1), we have


F32=kq2q3(r3r2)r3r23(2){{\vec{F}}_{32}}=k{{q}_{2}}{{q}_{3}}\frac{\left( {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{2}} \right)}{{{\left| {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{2}} \right|}^{3}}}\,\,\,\,\,\,\left( 2 \right)


We are given


r2=0.3i+0j,r3=0.3i+0.4j{{\vec{r}}_{2}}=0.3\vec{i}+0\vec{j},\,\,\,\,\,{{\vec{r}}_{3}}=0.3\vec{i}+0.4\vec{j}


Then


r3r2=0i+0.4j{{\vec{r}}_{3}}-{{\vec{r}}_{2}}=0\vec{i}+0.4\vec{j}

r3r2=0.4\left| {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{2}} \right|=0.4

r3r23=0.064{{\left| {{{\vec{r}}}_{3}}-{{{\vec{r}}}_{2}} \right|}^{3}}=0.064


Substitute the known values into (2)

 

F32=9109NmC29.0106C12.0106C0i+0.4j0.064m2{{{\vec{F}}}_{32}}=9\cdot {{10}^{9}}N\cdot m\cdot {{C}^{-2}}\cdot 9.0\cdot {{10}^{-6}}C \\ \cdot 12.0\cdot {{10}^{-6}}C\cdot \frac{0\vec{i}+0.4\vec{j}}{0.064\,{{m}^{2}}} \\

F32=15.188(0i+0.4j)N=6.08jN{{\vec{F}}_{32}}=15.188\cdot \,\left( 0\vec{i}+0.4\vec{j} \right)N=6.08\vec{j}N

 

3) Now we find the net force on q3 applying the superposition principle

F3=F31+F32=(1.56i+2.07j+6.08j)N{{\vec{F}}_{3}}={{\vec{F}}_{31}}+{{\vec{F}}_{32}}=(1.56\vec{i}+2.07\vec{j}+6.08\vec{j})N

=(1.56i+8.15j)N=(1.56\vec{i}+8.15\vec{j})N


 


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS