Find the complements of
[(A'+B)C']' =?
[(AB'+C)D'+E']' =?
[A+((BC')'+D)]" =?
(i) Using de Morgan's theorem
"\\begin{bmatrix}\n (A'+B) &C'\\\\\n \n\\end{bmatrix}=(A'+B)'+C''"
Applying involution law
"=(A'+B)'+C"
Applying de Morgan's theorem
"=A''.B'+C"
Applying involution law
"=A.B'+C"
(ii)
Applying de Morgan's theorem
"=\\begin{bmatrix}\n (AB'+C)D' \n \n\\end{bmatrix}'.E''"
Applying involution law
"=\\begin{bmatrix}\n a\n(AB'+C) & D'\n \n\\end{bmatrix}'.E"
Applying de Morgan's law
"=\\begin{bmatrix}\n (AB'+C)'+D'' \n \n\\end{bmatrix}.E"
Applying double negation
"\\begin{bmatrix}\n (AB'+C)'+D \n \n\\end{bmatrix}.E"
Applying de Morgan's theorem
"=\\begin{bmatrix}\n (AB')'.C'+D\n \n\\end{bmatrix}.E"
"=\\begin{bmatrix}\n (A'+B'').C'+D\n \n\\end{bmatrix}.E"
"=\\begin{bmatrix}\n (A'+B).C'+D \n \n\\end{bmatrix}.E"
"=\\begin{bmatrix}\n A'C'+BC'+D \n \n\\end{bmatrix}.E"
"=E(D+C').(B+D+A')"
Applying involution law
"=\\begin{bmatrix}\n A+((BC')'+D) \\\\\n \n\\end{bmatrix}''"
Using involution law
"=A+((BC')'+D)"
Applying de Morgan's theorem
"=A+(B'+C'')+D"
Applying involution law
"=A+B'+C+D"
Comments
Leave a comment