Answer to Question #259236 in Electric Circuits for Rex

Question #259236

Determine the current flowing through an element if the charge flow is given by a. q(t)= (3e-t -5e-2t) nC b. q(t)= 10sin120πt pC c. q(t)= 20e-4tcos50t µC

1
Expert's answer
2021-11-01T17:11:19-0400

If the charge flow is given as a function of time, i.e. q(t), we determine the current flowing through an element by:

I=dq(t)dtI = \frac {dq(t)} {dt}

where I = current


(a) For the charge flow given by: q(t)= (3e-t -5e-2t) nC;

I=dq(t)dtI=d(3et5e2t)nCdtI=ddt(3et5e2t)nCI = \frac {dq(t)} {dt} \\ I = \frac {d(3e-t -5e-2t) nC} {dt} \\ I = \frac {d} {dt} (3e-t -5e-2t) nC \\

differentiating q(t) = (3e-t -5e-2t) nC with respect to time (t),

I=ddt(3e)ddt(t)ddt(5e)ddt(2t) nCI=(0102)nCI=3nCor I=3×109 CI = \frac {d} {dt} (3e) - \frac {d} {dt} (t) - \frac {d} {dt} (5e)- \frac {d} {dt} (2t) \ nC \\ I = (0 - 1 - 0 - 2) nC \\ I = -3 nC \\ or \ I = -3 \times 10^{-9} \ C


(b) For the charge flow given by: q(t) = 10sin120πt pC

I=dq(t)dtI=d(10sin120πt) pCdtI = \frac {dq(t)} {dt} \\ I = \frac {d(10 \sin120\pi t) \ pC} {dt}

differentiating q(t) = 10sin120πt pC with respect to time (t),

I=ddt(10sin120πt)pClet w=120πtu=sinwand, q=10uI=dqdt=dwdt×dudw×dqduw=120πt, dwdt=ddt(120πt)=120πu=sinw,dudw=ddw(sinw)=coswq=10u,dqdu=ddu(10u)=10I=dqdt=120π×cosw×10 pCI=1200πcos120πt pCorI=1200πcos120πt×1012 CI=1.2πcos120πt×109 CI=1.2πcos120πt nCI = \frac {d} {dt} (10 \sin 120\pi t) pC \\ let \ w = 120\pi t \\ u= \sin w \\ and, \ q = 10u \\ I = \frac {dq} {dt} = \frac {dw} {dt} \times \frac {du} {dw} \times \frac {dq} {du} \\ w = 120 \pi t, \ \frac {dw} {dt} = \frac {d} {dt} (120\pi t) = 120 \pi \\ u = \sin w, \frac{du}{dw} = \frac {d} {dw} (\sin w) = \cos w \\ q = 10 u, \frac {dq} {du} = \frac {d} {du} (10u) = 10 \\ I = \frac {dq} {dt} = 120 \pi \times \cos w \times 10 \ pC \\ I = 1200 \pi \cos 120 \pi t \ pC \\ or \\ I = 1200 \pi \cos 120 \pi t \times 10^{-12} \ C \\ I = 1.2 \pi \cos 120 \pi t \times 10^{-9} \ C \\ I = 1.2 \pi \cos 120 \pi t \ nC


(c) For the charge flow given by: q(t)= 20e-4tcos50t µC

I=dq(t)dtI=d(20e4tcos50t) µCdtI = \frac {dq(t)} {dt} \\ I = \frac {d(20e-4tcos50t) \ µC} {dt} \\

differentiating q(t) = 20e-4tcos50t µC with respect to time (t),

I=ddt(20e4tcos50t) µCI=ddt(20e)ddt4tcos50tddt(20e)=0I=ddt(4tcos50t)let w=50tu=coswand, q=4tuI=dqdt=dwdt×dudw×dqduw=50t, dwdt=ddt(50t)=50u=cosw,dudw=ddw(cosw)=sinwq=4tu,dqdu=ddu(4tu)=4tI=0dqdt=dqdt=(50×sinw×4t) µCI=200tsin50t µCorI=200tsin50t×106 CI=0.2tsin50t×103 CI=0.2tcos50t mCI = \frac {d} {dt} (20e-4t\cos50t) \ µC \\ I = \frac {d} {dt} (20e) - \frac {d} {dt} 4t\cos50t \\ \frac {d} {dt} (20e) = 0 \\ \therefore I = - \frac {d} {dt} (4t\cos50t) \\ let \ w = 50 t \\ u= \cos w \\ and, \ q = 4tu \\ I = \frac {dq} {dt} = \frac {dw} {dt} \times \frac {du} {dw} \times \frac {dq} {du} \\ w = 50 t, \ \frac {dw} {dt} = \frac {d} {dt} (50 t) = 50 \\ u = \cos w, \frac{du}{dw} = \frac {d} {dw} (\cos w) = -\sin w \\ q = 4tu, \frac {dq} {du} = \frac {d} {du} (4tu) = 4t \\ I = 0 - \frac {dq} {dt} = - \frac {dq} {dt} = - (50 \times -\sin w \times 4t) \ µC \\ I = 200t \sin 50 t \ µC \\ or \\ I = 200t \sin 50 t \times 10^{-6} \ C \\ I = 0.2t \sin 50 t \times 10^{-3} \ C \\ I = 0.2t \cos 50 t \ mC


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment