If the charge flow is given as a function of time, i.e. q(t), we determine the current flowing through an element by:
I=dtdq(t)
where I = current
(a) For the charge flow given by: q(t)= (3e-t -5e-2t) nC;
I=dtdq(t)I=dtd(3e−t−5e−2t)nCI=dtd(3e−t−5e−2t)nC
differentiating q(t) = (3e-t -5e-2t) nC with respect to time (t),
I=dtd(3e)−dtd(t)−dtd(5e)−dtd(2t) nCI=(0−1−0−2)nCI=−3nCor I=−3×10−9 C
(b) For the charge flow given by: q(t) = 10sin120πt pC
I=dtdq(t)I=dtd(10sin120πt) pC
differentiating q(t) = 10sin120πt pC with respect to time (t),
I=dtd(10sin120πt)pClet w=120πtu=sinwand, q=10uI=dtdq=dtdw×dwdu×dudqw=120πt, dtdw=dtd(120πt)=120πu=sinw,dwdu=dwd(sinw)=coswq=10u,dudq=dud(10u)=10I=dtdq=120π×cosw×10 pCI=1200πcos120πt pCorI=1200πcos120πt×10−12 CI=1.2πcos120πt×10−9 CI=1.2πcos120πt nC
(c) For the charge flow given by: q(t)= 20e-4tcos50t µC
I=dtdq(t)I=dtd(20e−4tcos50t) µC
differentiating q(t) = 20e-4tcos50t µC with respect to time (t),
I=dtd(20e−4tcos50t) µCI=dtd(20e)−dtd4tcos50tdtd(20e)=0∴I=−dtd(4tcos50t)let w=50tu=coswand, q=4tuI=dtdq=dtdw×dwdu×dudqw=50t, dtdw=dtd(50t)=50u=cosw,dwdu=dwd(cosw)=−sinwq=4tu,dudq=dud(4tu)=4tI=0−dtdq=−dtdq=−(50×−sinw×4t) µCI=200tsin50t µCorI=200tsin50t×10−6 CI=0.2tsin50t×10−3 CI=0.2tcos50t mC
Comments
Leave a comment