Question #206244

2. Draw the net electric field ate the center of:

a. A line segment of length 1.0 m with a +1-C charge and a –1-C charge at its endpoints;

b. An equilateral triangle of side length 1.0 m with alternating +1-C, –1-C, and +1-C charges

placed at its vertices;

c. A square of side length 1.0 m with alternating +1-C, –1-C, +1-C, and –1-C charges placed

at its vertices

d. Calculate the magnitude and determine the direction of the net electric field at the center

of each configurations in a, b, an c.


1
Expert's answer
2021-06-14T15:04:35-0400

V1=kqr1V_1=\frac{kq}{r_1}

r1=r2=0.5mr_1=r_2=0.5m

V1=9×109×10.5=18×109VV_1=\frac{9\times10^9\times 1}{0.5}=18\times10^{9}V

V2=kqr2V_2=\frac{kq}{r_2}

V2=9×109×10.5=18×109VV_2=-\frac{9\times10^9\times1}{0.5}=-18\times10^{9}V

Centre of point p

Put Value

Vnet=V1V2=0VV_{net}=V_1-V_2=0V

Vnet=0V

Part(b)

Potential at centre of triangle



VA=kQrAPV_A=\frac{kQ}{r_{AP}}

VA=9×109×113=93VV_A=\frac{9\times10^9 \times1}{\frac{1}{\sqrt3}}=9\sqrt3V

VB=9×109×113=93VV_B=-\frac{9\times10^9 \times1}{\frac{1}{\sqrt3}}=-9\sqrt3V

Vc=9×109×113=93VV_c=\frac{9\times10^9 \times1}{\frac{1}{\sqrt3}}=9\sqrt3V

Vnet=VA+VB+VCV_{net}=V_A+V_B+V_C


Vnet=9393+93=93VV_{net}=9\sqrt3-9\sqrt3+9\sqrt3=9\sqrt3 V

Part (c)

PointA(+1C) point B(-1C)


PointC(+1C) point D(-1C)


Centre point P


AP=BP=CP=DP =12\frac{1}{\sqrt2} m


VA=KQrAPV_A=\frac{KQ}{r_{AP}}

VA=9×109×112=92VV_A=\frac{9\times10^9\times1}{\frac{1}{\sqrt2}}=9\sqrt2V

VB=9×109×112=92VV_B=-\frac{9\times10^9\times1}{\frac{1}{\sqrt2}}=-9\sqrt2V

VC=9×109×112=92VV_C=\frac{9\times10^9\times1}{\frac{1}{\sqrt2}}=9\sqrt2V

VD=9×109×112=92VV_D=-\frac{9\times10^9\times1}{\frac{1}{\sqrt2}}=-9\sqrt2V

V=VA+VB+VC+VDV=V_A+V_B+V_C+V_D

Put value

Vnet=0VV_{net}=0V

Part (d)

Electric field

EA=kqr2E_A=\frac{kq}{r^2}


EA=9×109×1.52=3.6×1010N/CE_A=\frac{9\times10^9\times1}{.5^2}=3.6\times10^{10}N/C

EB=9×109×1.52=3.6×1010N/CE_B=-\frac{9\times10^9\times1}{.5^2}=-3.6\times10^{10}N/C

Enet=EA+EB=0N/CE_{net}=E_A+E_B=0N/C

Electric field at centre of triangle


EA=kQrAP2E_A=\frac{kQ}{r^2_{AP}}

EA=9×109×1(13)2=27N/CE_A=\frac{9\times10^9\times1}{(\frac{1}{\sqrt3})^2}=27N/C

EB=9×109×1(13)2=27N/CE_B=-\frac{9\times10^9\times1}{(\frac{1}{\sqrt3})^2}=-27N/C

EC=9×109×1(13)2=27N/CE_C=\frac{9\times10^9\times1}{(\frac{1}{\sqrt3})^2}=27N/C

Net electric field at centre

Enet=27N/CE_{net}=27N/C

Electric field square at centre

EA=KQrAP2E_A=\frac{KQ}{r^2_{AP}}

EA=9×109×1(12)2=18N/CE_A=\frac{9\times10^9\times1}{(\frac{1}{\sqrt2})^2}=18N/C

EB=9×109×1(12)2=18N/CE_B=-\frac{9\times10^9\times1}{(\frac{1}{\sqrt2})^2}=-18N/C

EC=9×109×1(12)2=18N/CE_C=\frac{9\times10^9\times1}{(\frac{1}{\sqrt2})^2}=18N/C

ED=9×109×1(12)2=18N/CE_D=-\frac{9\times10^9\times1}{(\frac{1}{\sqrt2})^2}=-18N/C

Net electric field of center of square


Enet=EA+EB+EC+ED=0N/CE_{net}=E_A+E_B+E_C+E_D=0N/C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS