2. Draw the net electric field ate the center of:
a. A line segment of length 1.0 m with a +1-C charge and a –1-C charge at its endpoints;
b. An equilateral triangle of side length 1.0 m with alternating +1-C, –1-C, and +1-C charges
placed at its vertices;
c. A square of side length 1.0 m with alternating +1-C, –1-C, +1-C, and –1-C charges placed
at its vertices
d. Calculate the magnitude and determine the direction of the net electric field at the center
of each configurations in a, b, an c.
"V_1=\\frac{kq}{r_1}"
"r_1=r_2=0.5m"
"V_1=\\frac{9\\times10^9\\times 1}{0.5}=18\\times10^{9}V"
"V_2=\\frac{kq}{r_2}"
"V_2=-\\frac{9\\times10^9\\times1}{0.5}=-18\\times10^{9}V"
Centre of point p
Put Value
"V_{net}=V_1-V_2=0V"
Vnet=0V
Part(b)
Potential at centre of triangle
"V_A=\\frac{kQ}{r_{AP}}"
"V_A=\\frac{9\\times10^9 \\times1}{\\frac{1}{\\sqrt3}}=9\\sqrt3V"
"V_B=-\\frac{9\\times10^9 \\times1}{\\frac{1}{\\sqrt3}}=-9\\sqrt3V"
"V_c=\\frac{9\\times10^9 \\times1}{\\frac{1}{\\sqrt3}}=9\\sqrt3V"
"V_{net}=V_A+V_B+V_C"
Part (c)
PointA(+1C) point B(-1C)
PointC(+1C) point D(-1C)
Centre point P
AP=BP=CP=DP ="\\frac{1}{\\sqrt2}" m
"V_A=\\frac{KQ}{r_{AP}}"
"V_A=\\frac{9\\times10^9\\times1}{\\frac{1}{\\sqrt2}}=9\\sqrt2V"
"V_B=-\\frac{9\\times10^9\\times1}{\\frac{1}{\\sqrt2}}=-9\\sqrt2V"
"V_C=\\frac{9\\times10^9\\times1}{\\frac{1}{\\sqrt2}}=9\\sqrt2V"
"V_D=-\\frac{9\\times10^9\\times1}{\\frac{1}{\\sqrt2}}=-9\\sqrt2V"
"V=V_A+V_B+V_C+V_D"
Put value
"V_{net}=0V"
Part (d)
Electric field
"E_A=\\frac{kq}{r^2}"
"E_B=-\\frac{9\\times10^9\\times1}{.5^2}=-3.6\\times10^{10}N\/C"
"E_{net}=E_A+E_B=0N\/C"
Electric field at centre of triangle
"E_A=\\frac{kQ}{r^2_{AP}}"
"E_A=\\frac{9\\times10^9\\times1}{(\\frac{1}{\\sqrt3})^2}=27N\/C"
"E_B=-\\frac{9\\times10^9\\times1}{(\\frac{1}{\\sqrt3})^2}=-27N\/C"
"E_C=\\frac{9\\times10^9\\times1}{(\\frac{1}{\\sqrt3})^2}=27N\/C"
Net electric field at centre
"E_{net}=27N\/C"
Electric field square at centre
"E_A=\\frac{KQ}{r^2_{AP}}"
"E_A=\\frac{9\\times10^9\\times1}{(\\frac{1}{\\sqrt2})^2}=18N\/C"
"E_B=-\\frac{9\\times10^9\\times1}{(\\frac{1}{\\sqrt2})^2}=-18N\/C"
"E_C=\\frac{9\\times10^9\\times1}{(\\frac{1}{\\sqrt2})^2}=18N\/C"
"E_D=-\\frac{9\\times10^9\\times1}{(\\frac{1}{\\sqrt2})^2}=-18N\/C"
Net electric field of center of square
Comments
Leave a comment