V 1 = k q r 1 V_1=\frac{kq}{r_1} V 1 = r 1 k q
r 1 = r 2 = 0.5 m r_1=r_2=0.5m r 1 = r 2 = 0.5 m
V 1 = 9 × 1 0 9 × 1 0.5 = 18 × 1 0 9 V V_1=\frac{9\times10^9\times 1}{0.5}=18\times10^{9}V V 1 = 0.5 9 × 1 0 9 × 1 = 18 × 1 0 9 V
V 2 = k q r 2 V_2=\frac{kq}{r_2} V 2 = r 2 k q
V 2 = − 9 × 1 0 9 × 1 0.5 = − 18 × 1 0 9 V V_2=-\frac{9\times10^9\times1}{0.5}=-18\times10^{9}V V 2 = − 0.5 9 × 1 0 9 × 1 = − 18 × 1 0 9 V
Centre of point p
Put Value
V n e t = V 1 − V 2 = 0 V V_{net}=V_1-V_2=0V V n e t = V 1 − V 2 = 0 V
Vnet =0V
Part(b)
Potential at centre of triangle
V A = k Q r A P V_A=\frac{kQ}{r_{AP}} V A = r A P k Q
V A = 9 × 1 0 9 × 1 1 3 = 9 3 V V_A=\frac{9\times10^9 \times1}{\frac{1}{\sqrt3}}=9\sqrt3V V A = 3 1 9 × 1 0 9 × 1 = 9 3 V
V B = − 9 × 1 0 9 × 1 1 3 = − 9 3 V V_B=-\frac{9\times10^9 \times1}{\frac{1}{\sqrt3}}=-9\sqrt3V V B = − 3 1 9 × 1 0 9 × 1 = − 9 3 V
V c = 9 × 1 0 9 × 1 1 3 = 9 3 V V_c=\frac{9\times10^9 \times1}{\frac{1}{\sqrt3}}=9\sqrt3V V c = 3 1 9 × 1 0 9 × 1 = 9 3 V
V n e t = V A + V B + V C V_{net}=V_A+V_B+V_C V n e t = V A + V B + V C
V n e t = 9 3 − 9 3 + 9 3 = 9 3 V V_{net}=9\sqrt3-9\sqrt3+9\sqrt3=9\sqrt3 V V n e t = 9 3 − 9 3 + 9 3 = 9 3 V Part (c)
PointA(+1C) point B(-1C)
PointC(+1C) point D(-1C)
Centre point P
AP=BP=CP=DP =1 2 \frac{1}{\sqrt2} 2 1 m
V A = K Q r A P V_A=\frac{KQ}{r_{AP}} V A = r A P K Q
V A = 9 × 1 0 9 × 1 1 2 = 9 2 V V_A=\frac{9\times10^9\times1}{\frac{1}{\sqrt2}}=9\sqrt2V V A = 2 1 9 × 1 0 9 × 1 = 9 2 V
V B = − 9 × 1 0 9 × 1 1 2 = − 9 2 V V_B=-\frac{9\times10^9\times1}{\frac{1}{\sqrt2}}=-9\sqrt2V V B = − 2 1 9 × 1 0 9 × 1 = − 9 2 V
V C = 9 × 1 0 9 × 1 1 2 = 9 2 V V_C=\frac{9\times10^9\times1}{\frac{1}{\sqrt2}}=9\sqrt2V V C = 2 1 9 × 1 0 9 × 1 = 9 2 V
V D = − 9 × 1 0 9 × 1 1 2 = − 9 2 V V_D=-\frac{9\times10^9\times1}{\frac{1}{\sqrt2}}=-9\sqrt2V V D = − 2 1 9 × 1 0 9 × 1 = − 9 2 V
V = V A + V B + V C + V D V=V_A+V_B+V_C+V_D V = V A + V B + V C + V D
Put value
V n e t = 0 V V_{net}=0V V n e t = 0 V
Part (d)
Electric field
E A = k q r 2 E_A=\frac{kq}{r^2} E A = r 2 k q
E A = 9 × 1 0 9 × 1 . 5 2 = 3.6 × 1 0 10 N / C E_A=\frac{9\times10^9\times1}{.5^2}=3.6\times10^{10}N/C E A = . 5 2 9 × 1 0 9 × 1 = 3.6 × 1 0 10 N / C
E B = − 9 × 1 0 9 × 1 . 5 2 = − 3.6 × 1 0 10 N / C E_B=-\frac{9\times10^9\times1}{.5^2}=-3.6\times10^{10}N/C E B = − . 5 2 9 × 1 0 9 × 1 = − 3.6 × 1 0 10 N / C E n e t = E A + E B = 0 N / C E_{net}=E_A+E_B=0N/C E n e t = E A + E B = 0 N / C
Electric field at centre of triangle
E A = k Q r A P 2 E_A=\frac{kQ}{r^2_{AP}} E A = r A P 2 k Q
E A = 9 × 1 0 9 × 1 ( 1 3 ) 2 = 27 N / C E_A=\frac{9\times10^9\times1}{(\frac{1}{\sqrt3})^2}=27N/C E A = ( 3 1 ) 2 9 × 1 0 9 × 1 = 27 N / C
E B = − 9 × 1 0 9 × 1 ( 1 3 ) 2 = − 27 N / C E_B=-\frac{9\times10^9\times1}{(\frac{1}{\sqrt3})^2}=-27N/C E B = − ( 3 1 ) 2 9 × 1 0 9 × 1 = − 27 N / C
E C = 9 × 1 0 9 × 1 ( 1 3 ) 2 = 27 N / C E_C=\frac{9\times10^9\times1}{(\frac{1}{\sqrt3})^2}=27N/C E C = ( 3 1 ) 2 9 × 1 0 9 × 1 = 27 N / C
Net electric field at centre
E n e t = 27 N / C E_{net}=27N/C E n e t = 27 N / C
Electric field square at centre
E A = K Q r A P 2 E_A=\frac{KQ}{r^2_{AP}} E A = r A P 2 K Q
E A = 9 × 1 0 9 × 1 ( 1 2 ) 2 = 18 N / C E_A=\frac{9\times10^9\times1}{(\frac{1}{\sqrt2})^2}=18N/C E A = ( 2 1 ) 2 9 × 1 0 9 × 1 = 18 N / C
E B = − 9 × 1 0 9 × 1 ( 1 2 ) 2 = − 18 N / C E_B=-\frac{9\times10^9\times1}{(\frac{1}{\sqrt2})^2}=-18N/C E B = − ( 2 1 ) 2 9 × 1 0 9 × 1 = − 18 N / C
E C = 9 × 1 0 9 × 1 ( 1 2 ) 2 = 18 N / C E_C=\frac{9\times10^9\times1}{(\frac{1}{\sqrt2})^2}=18N/C E C = ( 2 1 ) 2 9 × 1 0 9 × 1 = 18 N / C
E D = − 9 × 1 0 9 × 1 ( 1 2 ) 2 = − 18 N / C E_D=-\frac{9\times10^9\times1}{(\frac{1}{\sqrt2})^2}=-18N/C E D = − ( 2 1 ) 2 9 × 1 0 9 × 1 = − 18 N / C
Net electric field of center of square
E n e t = E A + E B + E C + E D = 0 N / C E_{net}=E_A+E_B+E_C+E_D=0N/C E n e t = E A + E B + E C + E D = 0 N / C
Comments